Track Reconstruction: the ftf and trf toolkits

Norman Graf (SLAC)
Common Software Working Meeting CERN, January 31, 2013

ftf Track Finding

- Using a conformal mapping technique
\square Maps curved trajectories onto straight lines
- Simple link-and-tree type of following approach associates hits.
- Once enough hits are linked, do a simple helix fit
- circle in r-phi
- straight line in s-z
- simple iteration to make commensurate
- Use these track parameters to predict track into regions with only 1-D measurements \& pick up hits.
- Outside-in, inside-out, cross-detector: completely flexible as long as concept of layer exists.
- Runtime control of finding details.
- Simple fit serves as input to final Kalman fitter.

ftf for LC

- Worked with Steve Aplin last year during his stay at KEK.
- Implemented ftf functionality into a Marlin Processor
- able to find tracks in ttbar events
- Development work stalled as pressure of the DBD mounted.
- Interested in collaborating to investigate whether this provides useful functionality Topological finder, only uses concept of layer, does not need geometry
trf
- A toolkit for:
- Describing material and hits along a trajectory.
- Propagating from one surface to the next.
- with a model of multiple scattering.
- with a model of energy loss.
- Kalman filtering tracks that are described by the above components
- Providing track fits and covariance matrices at locations along the track
- trf has its own geometry and hit classes
- trf has its own choices for track parameters,

Surfaces

- Surfaces generally correspond to geometric shapes representing detector devices.
They provide a basis for tracks, and constrain one of the track parameters.
The track vector at a surface is expressed in parameters which are "natural" for that surface.
- Surfaces require some user input to decide which detector elements should be compressed, where hits should be defined, etc.
- Interaction with geometry and digitization
1.) Cylinder
- Surface defined coaxial with z, therefore specified by a single parameter r.
Track Parameters: ($\left.\phi, z, \alpha, \tan \lambda, q / p_{T}\right)$
- Bounded surface adds $z_{\text {min }}$ and $z_{\text {max }}$.
- Supports 1D and 2D hits:
- 1D Axial: ϕ
- 1D Stereo: $\phi+$ kz
- 2D Combined: (ϕ, z)
- Needs r, zmin, zmax

2.) XY Plane

- Surface defined parallel with z, therefore specified by distance u from the z axis and an angle ϕ of the normal with respect to x axis.
- Track Parameters: (v, z, dv/du, dz/du, q/p)
- Bounded surface adds polygonal boundaries.
- Supports 1D and 2D hits:
- 1D Stereo: $w_{v}{ }^{*} v+w_{z}{ }^{*} z$
- 2D Combined: (v, z)
- Needs u, ϕ and polygonal boundaries
3.) Z Plane
- Surface defined perpendicular to z, therefore specified by single parameter z.
- Track Parameters: (x, y, dx/dz, dy/dz, q/p)
- Bounded surface adds polygonal boundaries.
- Supports 1D and 2D hits:
- 1D Stereo: $w_{x}{ }^{*} x+w_{y}{ }^{*} y$
- 2D Combined: (x, y)

4.) Distance of Closest Approach

- DCA is also a 5D Surface in the 6 parameter space of points along a track.
- It is not a 2D surface in 3D space.
- Characterized by the track direction and position in the (x, y) plane being normal; $\alpha=\pi / 2$.
- Track Parameters: (r, z, $\left.\phi_{\text {dir }}, \tan \lambda, q / p_{T}\right)$
- Not a geometrical Surface.

Propagator

- Propagators propagate a track (and optionally its covariance matrix) to a new surface.
- A propagator returns an object of type PropStat which describes the status of the attempted propagation:
- i.e. whether it was successful and, if so, in which direction the track was propagated (forward or backward).
- Interacting Propagators modify the track and its covariance matrix (in case of energy loss), or just the covariance matrix (thin multiple scattering.)
- Needs a Magnetic Field manager.

Propagators

- Propagators are defined for all combinations of surfaces:

Propagators
Propagators take a track from its current state and transport it to a given surface.

- Currently does not know or care about intervening Surfaces.
- Needs intelligent Geometer to decide, given a current track state, what the next Surface should be.

Interactors

- Describes the interface for a class which modifies a track. Examples are:
- Multiple Scattering
- ThickCyIMS
- ThinXYPlaneMS
- ThinZPlaneMS
- Energy Loss
- CyIELoss
- Existing Interactors use effective X0 for Surfaces - some intelligence required

Detector

- Currently use compact.xml to create a tracking Detector composed of surfaces, along with interacting propagators to handle track vector and covariance matrix propagation, as well as energy loss and multiple scattering.
- Silicon pixel and microstrip wafers modeled as either xyplane or zplane.
- TPC modeled as cylindrical layers (corresponding to pad rows).
a Currently using thin multiple scattering approximations.
- Using pure solenoidal field propagators
- Runge-Kutta propagators available when needed.

Recent Developments

- Java version in org.lcsim being used by HPS for real data from the test run.
- Magnetic Field Map handling being optimized
- Runge-Kutta stepper being optimized
- adaptive step size
- Support being added for tilted planes.
- for misalignment
- intentional tilt to account for Lorentz angle
- Alignment software being implemented
- Not within trf framework

Summary

- trf toolkit provides full infrastructure for defining detectors, hits \& tracks as well as propagators, interactors and fitters.
- Currently working on ~generic interface between compact detector description and trf tracking Detector.
- Effort being devoted to "smart" propagator.
- Available in Java (org.lcsim) as well as C++ (standalone).
- ftf pattern recognition based on 2-D measurements on surfaces was implemented as Marlin Processor.
- Fast, with high efficiency.
- Lots of work ahead to interface with the geometry system.

