

MTTR & Spare Policy for the LHC Injectors

Magnets for the PS Complex

T. Zickler

Outline

Introduction

Scope

Magnet types

Typical problems and failures

Interventions in 2007

Risk analysis – Method

Risk analysis – Results

Risk analysis – Details

Conclusion and Future

Thanks to A. Newborough, D. Bodart, A. Hue for their contribution

Introduction

PS- Complex: structure grown during 50 years

Linac2, Linac3, Booster, PS, LEIR, AD, Isolde, Experimental Areas, beam lines ...

More than 1200 magnets, more than 200 different types

In the past: responsibility of machine superintendent

- → No central data base
- → Documentation kept in 'private' archives
- → Spare components distributed all over CERN

2003: responsibility of all nc magnets successively transferred to AT-MEL

2007: start to set up nc magnet database

Unique naming system

Inventory of installed and spare magnets

Upload magnet characteristics

Gather and scan related documents (drawings, specifications, measurement reports...)

Link to layout database

Scope: the LHC-injector

Magnet types

	Installed units	Magnet types
Linac 2 + TL	52	14
Booster	253	15
Booster TL	70	16
PS	243	24
TT2	49	9
Linac 3	40	19
Ion Beam Lines	47	20
LEIR	44	7
Total	798	108

All types:

Bending, combined function, corrector, dipole, multipole, octupole, quadrupole, sextupole, solenoid, water cooled, indirect water cooled, air cooled, iron-less, PFW, pulsed, continuous, etc...

CERN

Scope: the LHC-injector

LHC injector (PS-Complex): 800 Magnets of 108 different types

Policy:

- Systematic refurbishment of PS main magnets (106 units)
- All other: keep sufficient spare magnets and spare components (coils)

Typical problems and failures

Typical problems and failures which occur on magnets due to aging, radiation and fatigue, which lead to repair interventions or magnet replacement:

- Water leaks in cooling circuits
- Electrical short circuits to ground
- Obstructed cooling ducts
- Degradation of coil shimming
- Broken cable insulation
- Inter-turn short circuits

Interventions in 2007

Th. Zickler AT-MCS-MNC

21-23 January 2008.

CERNY

Risk analysis - Method

Based on CERN Risk Management System (EDMS No. 832542)

Risk analysis - Results

Risk analysis: Booster

Th. Zickler AT-MCS-MNC

21-23 January 2008.

Sven De Man - CERN
28/03/2000
ring98.cdr
produced with correldraw

Medium Risk

Multipoles

- 11 ONO/XNO/QSK (Type I)
- 4 ONO/XNO/QNO (Type II)
- 1 OSK/XSK/QNO (Type III B)
- 4 ONO/OSK/XNO/XSK (Type A)
- 4 OSK/XSK/DVT/DHZ (Type B)

Booste

PS ring

Mitigation: produce spare units of each type

Ressources needed:

400 kCHF, 0.8 FTE*y, 1.5y delay

CERN

Risk analysis: Booster Transfer Lines

Medium Risk: BI.DVT

Mitigation: new magnet foreseen for H- injection from Linac 4

Medium Risk: BT.BHZ10

<u>Mitigation:</u> find or produce spare coils

Ressources needed: 40 kCHF, 0.3 FTE*y, 1y delay

ATC / ABOC Days - Session 4

Risk analysis: Linac 3

Medium Risk	Solenoid (2)	Bruker quads (4)	Spectrometer (2)	Doublet B (2)	Triplet (3)	Bending 106 ^o (2)
Proposed Mitigation	Produce spare coils					
Costs [kCHF]	35	25	40	25	40	50
Manpower [FTE*y]	0.2	0.2	0.2	0.2	0.2	0.3
Delay [months]	12	12	12	12	12	18

Risk analysis: LEIR

Th. Zickler AT-MCS-MNC

21-23 January 2008.

Medium Risk: MC 100 (3)

Mitigation: find possible replacement magnets at CERN

Medium Risk: Main Bending (4)

Mitigation: produce spare coils

Ressources needed:

100 kCHF, 0.5 FTE*y, 1.5 y delay

Medium Risk: Main Quads (20)

Mitigation: produce spare coils

Ressources needed:

50 kCHF, 0.3 FTE*y, 1.5 y delay

Medium Risk: Skew Quads (2)

Mitigation: find spares at CERN

Conclusion and Future

Situation OK for:

Linac 2, PS, TT2

Spare situation to be improved for:

Booster, Linac 3, Ion Beam TL, LEIR

Total required: 800 kCHF, 3 FTE*y, 2 years delay

Extend magnet inventory to other machines and beam lines

CTF3, AD, Isolde, East Hall EA, n-TOF, SPS, North Area

Complete data base

Upload all relevant documents

Link to layout data base to ease maintenance and traceability

Central storage for PS Complex magnets

Regroup all spare magnets and magnet components in 150

Spare Slides

Risk analysis - Results (types)

Th. Zickler AT-MCS-MNC

21-23 January 2008.

