
Radiation Protection constraints for the operation of CERN's beam facilities

ATC/ABOC Days 21–23/1/2008 Heinz Vincke for SC–RP

Outline

Revised Safety Code F 2006

- Legal Dose Limits of workers at CERN
- Reference Levels
- New Area Classification
- CERN's Approach to ALARA

Summary and outlook

Impact on machine operation

Safety code F

- Revised Safety code F (Radiation protection) was issued in November 2006 to bring CERN in line with European radiation protection legislations and regulations
- CERN's revised Radiation Protection rules and regulations were endorsed by the Swiss and French authorities
- Safety Code F 1996 (Radiation Protection Manual) has been replaced by:
 - Safety Code F 2006 and is being completed by radiation protections instructions
 - + specific area- and work procedures

Note that Safety Instructions for radiation protection contained in the CERN Radiation Protection Manual (1996) remain valid for a transition period until all instructions are revised.

3

CERN legal limits

- Occupationally exposed :
 - Safety Code F 1996:
 - < 20 mSv/12 months</p>
 - Safety Code F 2006:
 - Class A < 20 mSv / 12 months
 - Class B
 Class B
 6 mSv / 12 months
- Short term visitors:
 - < 1 mSv / 12 months</p>

(not classified as occupationally exposed)

4

- Not occupationally exposed:
 - < 1 mSv / 12 months</p>

CERN Reference Levels

I) Annual individual, effective dose of occupationally exposed persons should stay below 6 mSv

Year	Number of persons with effective doses above 6 mSv/year	Activity
2000	13	Cable changes, maintenance of beam instrumentation, transport, radiation protection
2001	2	Transport, maintenance of beam instrumentation
2002	2	Transport
2003	5	Transport, radiation protection, Gamma radiography
2004	0	
2005	0	
2006	0	
2007	0 (preliminary)	
		5

CERN Reference Levels

II) The effective dose due to internal exposure should be less than 1 μSv per hour of stay

Main risk:

inhalation of radioactive aerosols

Areas of risk: target areas, extraction and injection areas

TCC2 Access procedures exists. CNGS Delayed access, several hours of waiting time

Preliminary results from air measurements:

TCC2: < 150 nSv effective dose for one hour of stay after two hours of waiting time

CNGS: < 5 nSv effective dose for one hour of stay after 12 hours waiting time

→ Studies need to be continued

CERN Reference Levels

2005

2006

III) The annual effective dose to the members of the reference group of the population (the most exposed group outside CERN) should stay below 10 μ Sv per year. The legal limit is 300 μ Sv per year.

From From stray Year Total air/water radiation releases 2003 3 21 24 2004 5 10 15 2

Effective dose in µSv/year

5

Courtesy: P. Vojtyla SC-IE

12

8

Natural radiation in the environment: ~800 µSv per year

10

3

CERN's Area Classification

CERN Area Classification until 2006

1 <u>mSv</u> /year	r 2	0 <u>mSv</u> /year	2 <u>mSv</u> /h	100 ŋ	nSv/h
Supervised	Simple controlled	Limited <u>stay</u> are	ea High radi	ation area	Prohibited area

CERN Area Classification since end of 2006

1 mSx/y	year 6 m	ax/year 20	<u>mSv</u> /year	2 <u>mS</u>)	<u>v</u> /h 100	mSv/h
Non- designated	Supervised	Simple controlled	Limited sta	y area I	High radiation area	Prohibited area

Safety Instruction S3-GSI1, EDMS 810149

Radiation areas: classification and warning panels

Area Classifica- tion	Dose limit	Ambient dose equivalent rate At work places	Ambient dose equivalent rate In low occu- pancy areas	Access, Personnel categories	Monitoring Personal dosimetry	Warning sign
Non- designated area	1 mSv / y	< 0.5 µSv h ⁻¹	< 2.5 µSv h ⁻¹	no restriction, all	passive or active, not required	n.a.
Supervised radiation area	6 mSv / y	< 3 µSv h⁻¹	< 15 µSv h ⁻¹	supervised, radiation workers and VCT	passive or active, personal dosimeter	RADIATION ZONE SURVEILLÉE SURVEILLÉE Dosimeter obligatory Dosimeter obligatore

 $< 2007 \qquad < 2.5 \ \mu Sv \ h^{-1} \quad < 7.5 \ \mu Sv \ h^{-1}$

Safety Instruction S3-GSI1, EDMS 810149

Radiation areas: classification and warning panels

Area Ambient Ambient Monitoring Warning Dose Access dose sign dose **Classifica**limit Personnel Personal equivalent equivalent tion categories dosimetry rate rate At In low bccuwork places pancy areas Controlled Active **A**, **A** RADIATION Simple ZONE CONTRÔLÉE CONTROLLED Class A AREA Controlled Personal 20 mSv/y $< 10 \,\mu\text{Sv/h}$ $< 50 \mu Sv/h$ workers Radiation dosimeter Dosimeter obligatory Dosimetre obligatoire Class B with area time limit Active Controlled RADIATION Limited ZONE CONTROLLED < 2 mSv/hONTRÔLÉE LIMITED STAY SÉJOUR LIMITÉ stay area Personal Class A Dosimeters obligatory 20 mSv/y dosimeter workers + RADIATION +High ZONE CONTROLLE Class B with <100 mSv/h ARE Operational radiation HIGH RADIATION time limit HAUTE RADIATION dosimeter Dosimeters obligatory Dosimetres obligatoires area RADIATION ZONE CONTROLLED Prohibited CONTRÔLÉE ARE PROHIBITED AREA >100 mSv/h ZONE INTERDIT area No Entry Défense d'entrer Rativitias Perio Raticonstanti o

< 2007 <25 µSv h⁻¹ <100 µSv h⁻¹

10

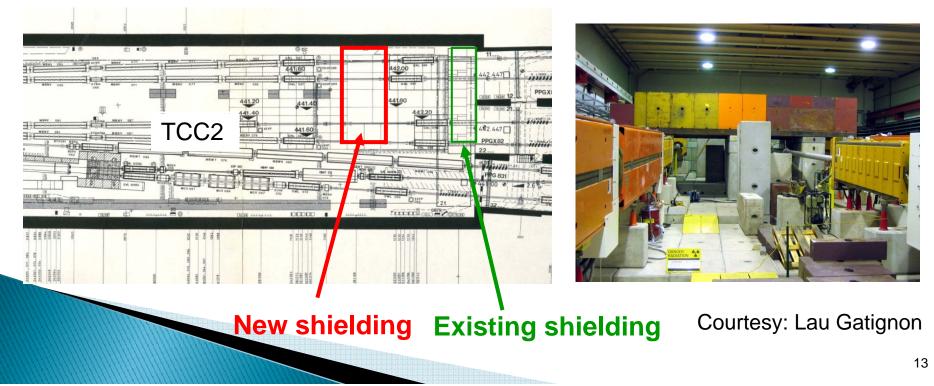
Type of area	Category A	Category B	VCT
Supervised area	Unlimited	Unlimited stay*	Stay allowed up to 2 months/year
Simple controlled area	stay*		
Controlled area: - limited stay - high radiation	Limited stay	Limited stay	Access prohibited

*) with respect to legal limits only but jobs have to be optimized and doses minimized in ALL areas

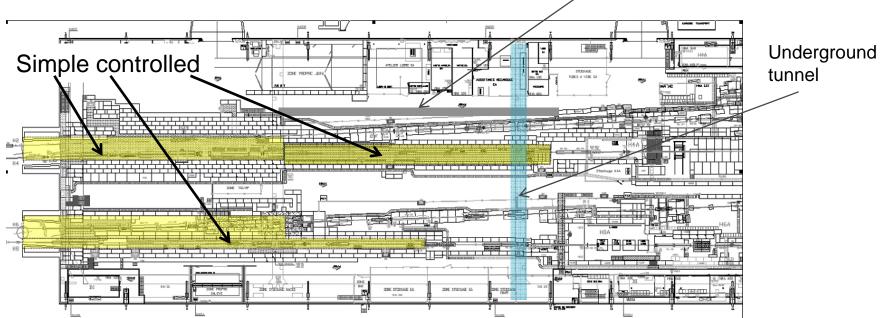
CERN's Premises: revision of radiological classification

Goal:

to bring CERN's area classification in line with Safety Code F 2006
 to keep the classification of an area as "low" as reasonable possible


Classification of EHN1 (North Hall)

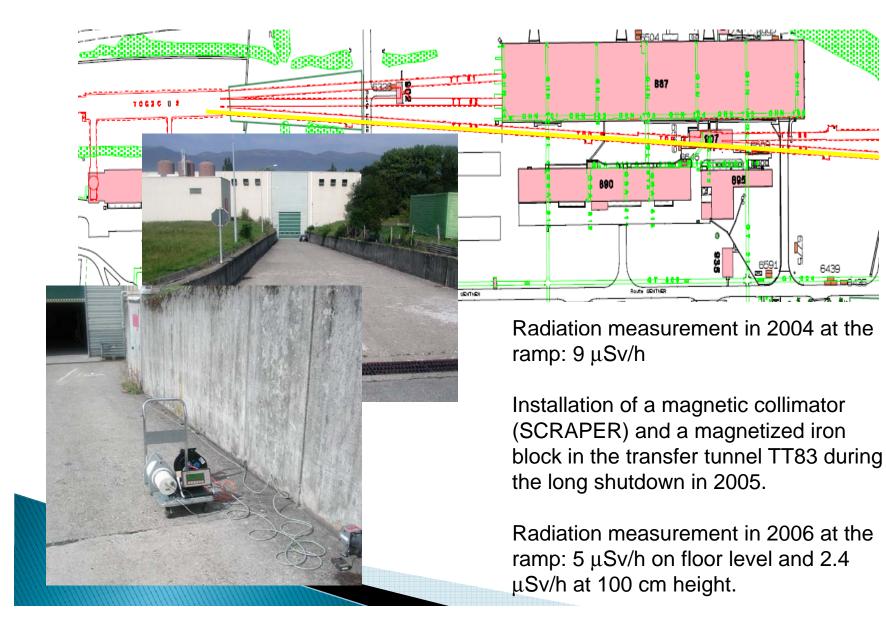
< 2006:


- ~160 uSv/h on top of H6 beam line

2007:

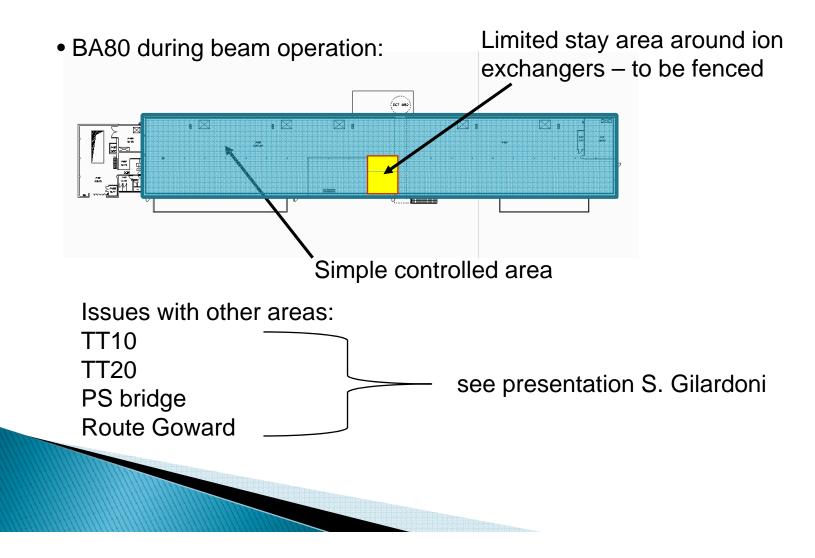
~ 20 uSv/h due to additional 6.4 m thick iron shielding in TCC2

EHN1: supervised and simple controlled areas Additional concrete shielding



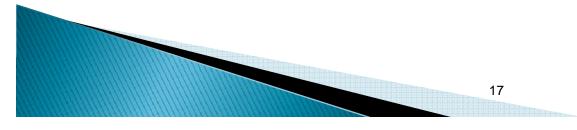
• Presently alarm levels of radiation monitors correspond to 'supervised' area levels

• In 2007 several beam cuts occurred and all of them could be backtracked to either placement of material into unshielded


- beam lines or unauthorized opening of collimators.
 Access to underground tunnel was prohibited when beam was dumped into upstream target in H4 beam line
 Measuring campaign will be continued in 2008

M2 beam line

More CERN areas have been revised....


• EHN2: COMPASS - supervised area even during hadron run

Implementation of ALARA at CERN

All work in radiation areas has to be optimised

- Supervised area: general optimisation by shielding, optimised location of workplaces...
- Controlled radiation areas: All work must be <u>planned and optimised</u> including an estimate of the collective dose and of the individual effective doses to the workers participating in the completion of the task.

ALARA at CERN

most of the ALARA elements were already used all over CERN in the past

since December 2006: •systematic, formalized approach

 requires "close collaboration" between RP and the workers performing the job

RN 1211 Genève 23 Isse	Nº EDMS 810169	1 1	
	RGE	section 9 / S5-NI1	
A		Date : 2006-12-20	
	NOTE D'INFORMATIO	N	
CONSIGNES GÉNÉRALES DE RADIOPROTECTION L'APPROCHE ALARA AU CERN			
L'AP	PROCHE ALARA AU	CERN	
L'AP	PROCHE ALARA AU	CERN	
DOUMBLT RÉPARÉ PAR : Pierre Bonnal / AB	PROCHE ALARA AU	CERN DOCUMENT APPROVAE MAR : Hans-Georg Menzel / SC	
Doqumbit Réprié P.R :	DOCUMENT VÊNFIÊ PAR :	DOCIMENT APPROVE PAR :	
DOUMBLT RÉPARÉ PAR : Pierre Bonnal / AB	DOCUMENT VÊNFIÊ PAR :	DOCIMENT APPROVE PAR :	
DOUMBLT RÉPARÉ PAR : Pierre Bonnal / AB	DOCUMENT VÊNFIÊ PAR :	DOCIMENT APPROVE PAR :	
DOUMBLT RÉPARÉ PAR : Pierre Bonnal / AB	dogument vérifié par: Thomas Otto / SC	DOCIMENT APPROVE PAR :	
DOUMBLT RÉPARÉ PAR : Pierre Bonnal / AB	dogument vérifié par: Thomas Otto / SC	DOCIMENT APPROVE PAR :	

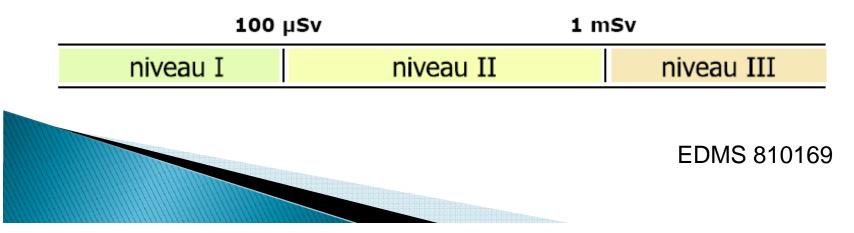
ALARA at CERN - 3 levels

ERN 1211 Genève 23 isse	N° EDNS 810176	5 I.O	
ERN	RGE	section 9 /	\$5-G\$I1
71			Date : 2006-12-2
INSTRUC	TION GÉNÉRALE DE	SÉCURITÉ	E
	ÉNÉRALES DE RADI		CTION
APPLICA	BLES AUX INTERV	ENTIONS	i
DOCUMENT PRÉPARÉ PAR :	DOQUMENT VÊRUSLÊ FAN: 1	DOCUM	NT APPROUVÉ PAR :
		DOCUM	
DOCUMENT PRÉPARÉ PAR : Fierre Bonnal / AB	DOQUMENT VÊRUSLÊ FAN: 1	DOCUM	NT APPROUVÉ PAR :
DOCUMENT PRÉPARÉ PAR : Fierre Bonnal / AB	DOQUMENT VÊRUSLÊ FAN: 1	DOCUM	NT APPROUVÉ PAR :
DOCUMENT PRÉPARÉ PAR : Fierre Bonnal / AB	DOCUMENT VÉRURÉ F.N. I Thomas Otto / SC	DOCUM	NT APPROUVÉ PAR :
DOCUMENT PRÉPARÉ PAR : Fierre Bonnal / AB	DOCUMENT VÉRURÉ F.N. I Thomas Otto / SC	DOCUM	NT APPROUVÉ PAR :
DOCUMENT PRÉPARÉ PAR : Fierre Bonnal / AB	DOCUMENT VÉRURÉ F.N. I Thomas Otto / SC	DOCUM	NT APPROUVÉ PAR :

ALARA procedures – 3 levels:

- If the rad. risk is **low** <> light procedure
- If it is medium
 <> an optimization effort is required
- If it is high
 <>an optimization effort is required, the procedure will be submitted to the ALARA committee

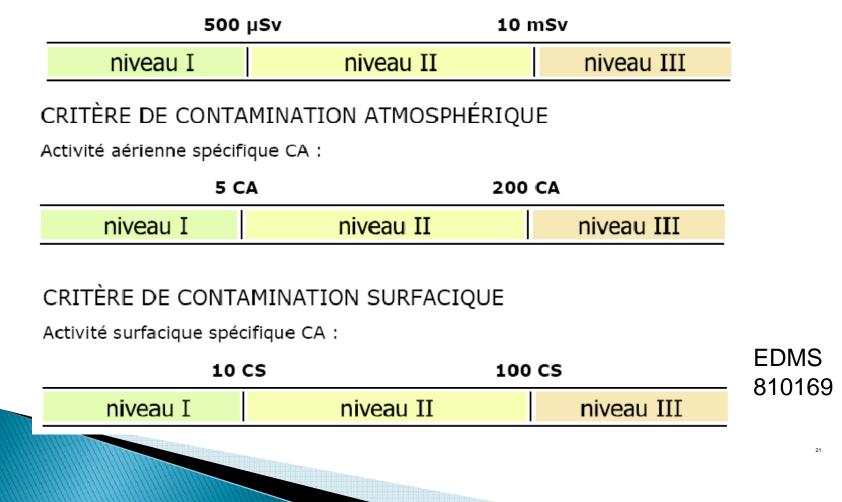
ALARA Criteria


CRITÈRE DE DÉBIT DE DOSE

Débit d'équivalent de dose prévisionnel (\dot{H}) dans la zone d'intervention :

50 μS	Sv·h⁻¹ 2 r	nSv·h⁻¹
niveau I	niveau II	niveau III

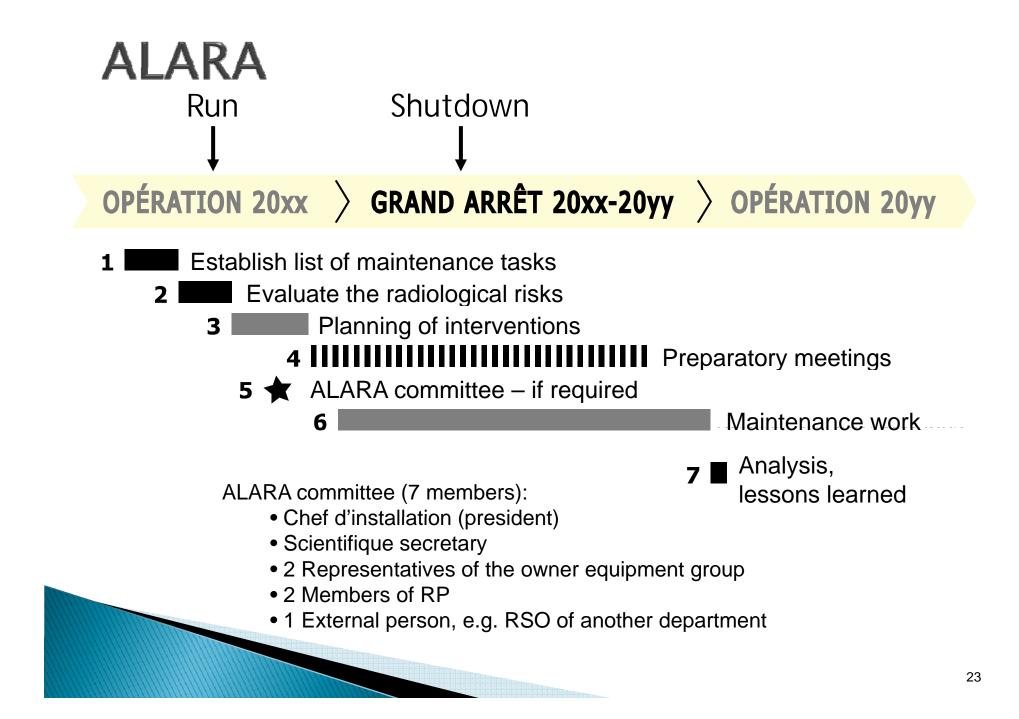
CRITÈRE DE DOSE INDIVIDUELLE


Équivalent de dose prévisionnel individuel (H_i) pour l'intervention, ou pour l'ensemble des interventions de même nature lorsque celles-ci sont répétées plusieurs fois sur une année :

ALARA Criteria

CRITÈRE DE DOSE COLLECTIVE

Équivalent de dose prévisionnel collective (H_c) pour l'intervention, ou pour l'ensemble des interventions de même nature lorsque celles-ci sont répétées plusieurs fois sur une année :



ALARA at CERN

When to apply which kind of procedure ?

Niveau de risque Dosimétrie individuelle Dosimétrie opérationnelle sans alarme Dosimétrie opérationnelle avec alarme Docts, descriptifs Dossier de sécurité Docts, justificatifs	I •	II • • •	• • •	•	Ш •	•
Dosimétrie opérationnelle sans alarme Dosimétrie opérationnelle avec alarme Docts, descriptifs	•		• • •	•	•	•
Dosimétrie opérationnelle avec alarme Docts, descriptifs	•		•	•		
Docts, descriptifs			•		-	
			0		•	•
Dossier de sécurité Docts, justificatifs		_				٠
		0	•			•
Docts. d'exploitation		0	0			0
Analyse de risques radiologiques	•	•	•	•	•	•
Calculs radiologiques / codes simples			•			•
Calculs radio ogiques / codes élaborés			•			•
Justification par analyses multi-critères		0	•		0	
Prise en compte du retour d'expérience	٠	٠	•	•	•	٠
DIMR de niveau I	•			•		
Dossier d'intervention en milieu radioactif		•			•	
DIMR de niveau III			•			•
Cartographie dosimétrique	0	•	•	0	•	•
Relevé de décisions du comité ALARA			•			0
Fiche d'écart / Retour d'expérience	0	0	0	0	0	0

required

ALARA

Radiological classification of shut-down activities for the SPS complex in 2007/2008 (Not exhaustive) 22 August 2007

Shut-down activity	Radiological risk
Rénovation 80 aimants y compris transport, vide géomètres	ш
Remplacement TPSG4 y compris transport, vide, géomètres	I.
Entretien général hydraulique MST/MSE en LSS2 en LSS4 et LSS6	11 – 111 1
Remise en eau et circulation MST/MSE en LSS 2 en LSS4 et LSS6	11 – 111 1
Entretien équipements ZS en LSS2	11 - 111
Tirage de câble HT (AB-BT) point 2 de ZS a MSE	ш
Remplacement MKDV en LSS6 (intervention vide)	I.
Contrôles radiologiques RP dans le SPS et les tunnels de transferts	ш
Eclairage Securite Controles altimetriques	

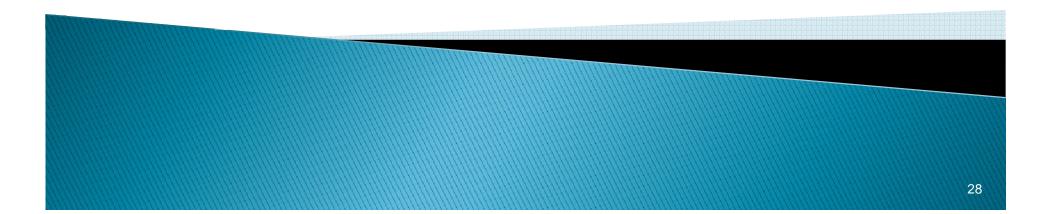
ALARA committee

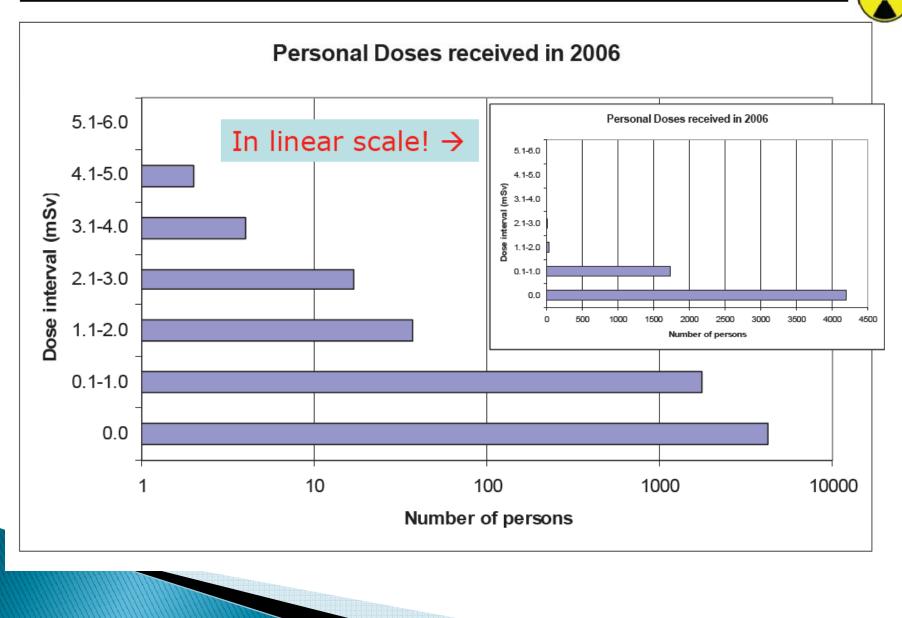
- First ALARA committee meeting was held 19/11/2007 (only part of class III works were discussed, the rest will be done in January 2008)
- Conclusions and recommendations
 - Many jobs are already optimised thanks to
 - experience
 - good co-ordination of the work by machine superintendants
 - earlier investments (e.g. SPS magnet repair: workshop in ECA5, purchase of additional magnet transport vehicle to compensate for the longer transport time of a magnet (circumventing BA1!)
 - Improvements are still possible

- Remote radiation measurement device
- Remote visual inspection device
- Use of fluorescence tubes which double the life time
- Switching off the light during beam operation

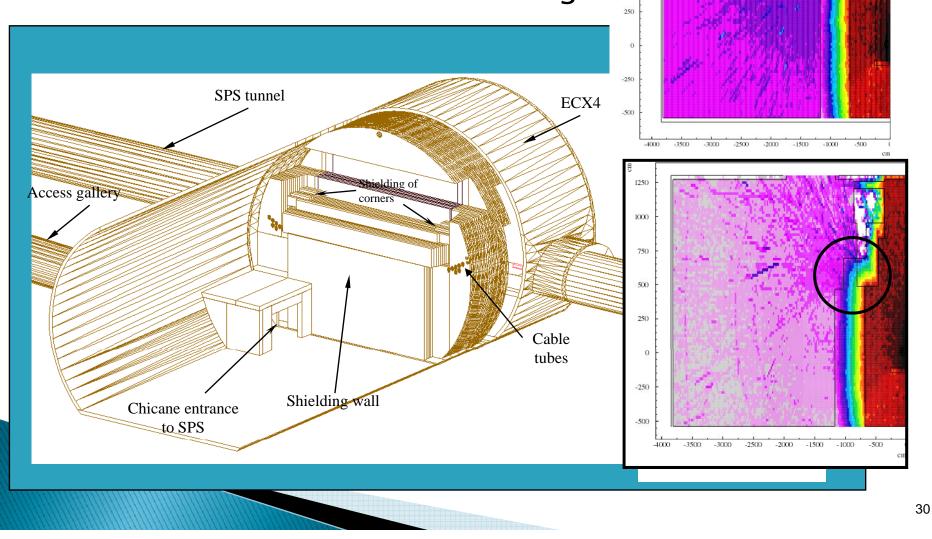
Summary and Outlook

- Revised RP rules, regulations and instructions are already applied at CERN since end of 2006
- More Safety Instructions still need to be completed e.g.
 - on the control, handling and release of activated material
 - on radioactive laboratories etc.
- More procedures still need to be completed e.g.
 - compensate for ARCON and RAMSES failures (e.g. stop of SPS when environmental station in TT10 fails)
- Revision of area classification needs to be continued
 - activities not directly correlated to beam operation should be moved out of radiation areas
 - Areas need to be shielded or fenced (e.g. North Area, SPS and CNGS ion exchangers, more areas see S. Gilardoni's talk)

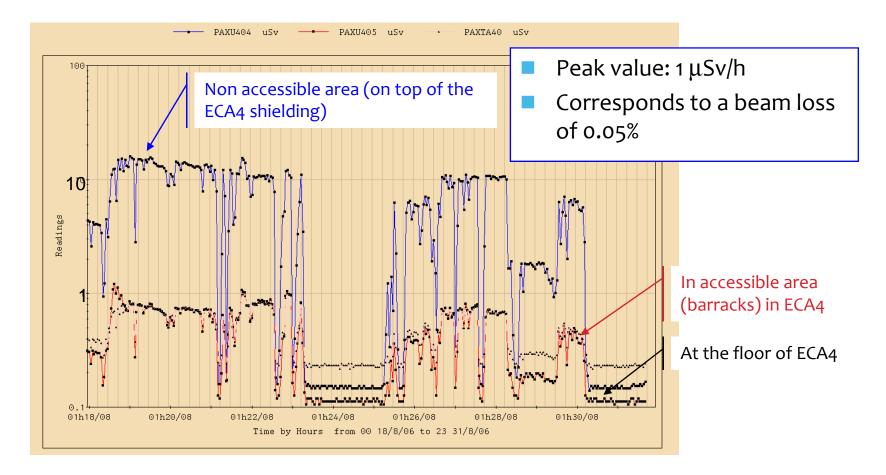



Final remarks

- Radioactive waste
 - Note that minimisation of radioactive waste is an integral part of the ALARA approach. Optimisation of the installation design with respect to material choice and maintenance interventions helps in reducing the total amount of radioactive waste and collective doses.
- New general radiation protection training course.
 - By decision of the Director- General the course is mandatory for all people under dosimetry control (i.e. in possession of a personal dosimeter).
 - Daily sessions started on Monday 14 January 2008.
 - More information can be found in the present CERN Bulletin (Issue No.04-05/2008).


Design and work procedures have to be adapted to the operation under new rules. To date excellent collaboration between SC-RP and all departments involved

Additional slides



Example: ECA4 Aim: supervised area -> reinforcement of shielding

ECA4: supervised area

Supervised area up to 4.8E13 protons/6 sec – nominal CNGS intensity