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Primary radiation effects in electronic materials and devices 

 Charged particles and high energy photons    ionization 
effects 

 Total dose effects     charge buildup in dielectrics 

 Threshold voltage offsets in MOS devices 

 Leakage currents 

 Transient effects     induced photocurrents 

 Single event upsets (SEU) 

 Current latchup 

 Neutrons     atomic lattice damage (atomic displacements) 

 Induced lattice defects 

 Carrier lifetime degradation 
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Total dose related charge build-up process 
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RADFET sensor 

 Operation principle: based on 
the MOSFET threshold shift 
induced by radiation 

 

 

 VT : MOSFET threshold voltage 

 Qot : charge trapped in the SiO2 

(always positive) 

 Qit : charge trapped in the 
interface Si-SiO2 (positive in 
pMOSFET,  negative in nMOSFET) 

 Cox: gate capacitance per cm2 

 

CERN January 2013 5 

ox

itot
T

C

QQ
V




Pre-rad 104 106 105 

Source: The NASA ASIC Guide: Assuring ASICS 
for Space] 

Dose (rad(SiO2)) 

V
T

 (
V

) 
 

-3 

-2 

-1 

0 

1 

2 

3 

nMOSFET 

pMOSFET 

OFF 

OFF 

ON 

ON 



 Schematic 
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 Sensitivity 
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Design issues in deep submicron CMOS technologies 

7 

To maintain sensor sensitivity, while keeping its compatibility 

with deep submicron CMOS technologies, the operating 

principle has to be changed 
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 Charge build-up (oxide trapped and interface trapped) decreases with dox 

 

 Devices in deep submicron CMOS technologies can withstand doses up to 

several Mrads without any specific hardness improvement.  

 The achievable sensitivity of the sensor is hampered by gate oxide 

thickness, which cannot be changed if we want keeping its compatibility 

with standard technologies  



Floating gate (FG) radiation sensor 

 Operation principle:  

 The sensor is a capacitor that uses 
the field oxide as dielectric, 
connected to the electrically 
“floating” gate of a nMOSFET. 

 Charge can be placed on the 
floating capacitor prior to the 
irradiation through an injector. 

 Ionizing radiation generates 
electron-hole pairs in the field 
oxide, gradually discharging the 
capacitor. 
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Operation of the FG radiation sensor 

 Dose rate (z)  
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 Radiation induced current (Ir) 
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Fractional yield 

 Geminate theory  

10 

10 

escape 
radius 

+ 

Particle 

track 

 Columnar theory 

+ 

Particle 

track 

+ + 

+ 
+ 

+ 
+ 

+ 

̶ 
̶ 

̶ 

̶ 

̶ 

̶ 

̶ ̶ 

 Experimental results 
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Response of the FG radiation sensor 
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FG radiation sensor. Injector 

 The injector is a small pMOSFET which has its gate bonded to the 
FG and the drain, source and bulk short-circuited 

12 

 The FG is charged by applying sufficiently large positive voltage to 
the injector electrode to cause tunneling through the gate oxide. 
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FG radiation sensor. Schematic 

 Schematic: 
 P1-P2 and N1-N2 form a 

current mirror that force N1 
and N2 to drive the same 
current 

 because N1-N2 have different 
aspect ratios, they have 
different gate-source voltages 

V = VGS(N1)-VGS(N2) 

 N3 acts as a resistance, 𝑅, 
controlled by the voltage at 
the floating-gate capacitor 
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FG radiation sensor. Response 
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 g radiation, 137Cs 

source  

 Curves obtained by 
HSPICE simulation 

 Experimental points 
@ 25 oC 



Current to frequency converter 

 Schematic  Waveforms 
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Current to frequency converter 

 Linear temp correction  
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Summary & conclusions 

 Our gamma radiation dosimeter is intended to be embedded 
in CMOS integrated circuits: it has low power consumption 
and require little silicon area 

 Its output is a square wave signal of radiation dependent 
frequency 

 Lowest detectable dose  1 rad. Sensitivity of the current 
source  20 mA/krad  

 Higher sensitivity  lower range. But the charge in the FG 
capacitor, can be reset again. 

 Temperature sensitivity is high, which practically imposes 
external temperature compensation.  
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