Diamond Sensors for Future HE Frontier Experiments

H. Kagan
Ohio State University

9th International Symposium on Development and Application of Semiconductor Tracking Detectors September 2, 2013 Hiroshima, Japan

Outline of Talk

- The ATLAS Diamond Detectors ongoing projects
- Metalization/Surface quality
- Sensor Qualification/Bump bonding
- Manufacturing/Scale-up
- Geometry
- Summary

The ATLAS Diamond Detectors - motivation

Luminosity at the LHC has risen rapidly to ~7.5x10³³cm⁻²s⁻¹

- Luminosity is a counting issue requires good segmentation in space or time
- Problems occur when particle multiplicity reaches a point where all segments have high probability of having a hit in every bunch crossing

The ATLAS Diamond Detectors - lessons

Luminosity measurement with the ATLAS diamond BCM

Speed, robustness, stability, redundancy required for good luminosity

The ATLAS Diamond Detectors - lessons

The BCM rate (speed) is BCID aware

 To provide robust rate measurements suppress backgrounds by 10⁻³-10⁻⁶

The ATLAS Diamond Detectors - lessons

Stability of two independent measurements BCMH and BCMV:

Stable over months

ATLAS Preliminary Tile BCMV_EventOR Lucid_EventOR FCal 14/04 29/04 15/05 31/05 16/06 01/0 Day in 2011

Stable against pile-up

In 2011 data BCM achieved a 1.8% luminosity measurement!

<μ>> / <μ> - 1 [% algorithm / <μ>

The ATLAS Diamond Detectors - limits

• But the BCM will begin to saturate at $\sim 10^{34}$ cm⁻²s⁻¹:

More segmentation → pixels → Diamond Beam Monitor (DBM)

The ATLAS DBM Concept

- Build on success of BCM pixelate the sensors
 - Use IBL diamond pixel demonstrator module
 - Install during new Service Quarter Panel (nSQP) replacement
 - Four 3-plane stations on each side of the IR
 - Collaboration: Bonn, CERN, Göttingen, Ljubljana, UNM, OSU, Toronto

The ATLAS DBM Concept

- 24 diamond pixel modules arranged in 8 telescopes to provide
 - Bunch by bunch luminosity monitoring (<1% per BC per LB)
 - Bunch by bunch beam spot monitoring (unbiased sample, ~ 1cm)
- Installation in (July) September 2013

Lessons Learned: Module Production

- Sensors
 - 38 old sensors recycled from E6 (UK) from IBL work
 - 10 new sensors in hand from E6 (UK)
 - 17 sensors in hand from II-VI (US)
- Quality Control
 - 6/38 old sensors+18/27 new sensors passed full QC(V,I,ccd)
 - 12/38 old sensors+21/27 new sensors passed reduced QC
- Bump bonding
 - 4 prototype modules bump-bonded by IZM
 - 28 sensors bump-bonded by IZM

Lessons Learned: Module Production

- HV Problems with first modules
 - Backside metalization goes to the edge of diamond and breaks down
 - Fixed by changing back metalization procedure no longer performed by IZM

Lessons Learned: Module Production

- Bump Bonding Problems with modules
 - Some modules are fully connected most modules are not
 - Bump-bonding turn out to be a large problem
 - Still working on this problem

H. Kagan

Lessons Learned: Testbeam

Many TestBeam Campaigns:

- Oct 11, Mar 12, Jun 12, ...
- 21mmx 18mm pCVD diamond w/FE-I4A
- 50x250μm² pixel cell/336x80=26880ch

Results

- Can not always get calibration/tuning for low threshold
- Noise map uniform, efficiency high

Lessons Learned: Testbeam

Prototype Modules Tested:

- 21mmx 18mm pCVD diamond w/FE-I4A
- $336 \times 80 = 26880$ channels
- 50 x 250 μm² pixel cell

Results

Spatial resolution looks digital

Diamond Production

Future detectors will require 10x - 100x more devices

Production and Scale-up demand additional manufacturers:

- For ATLAS DBM it was Element6 & II-VI
- Future: Micron Semiconductor, 2 US companies interested

Lessons Learned: Production

It can take a very long time to qualify additional manufacturers:

II-VI has now produced large, superb wafers

Lessons Learned: Installation

Installation on-going:

- Mechanics installed for first 4 telescopes
- First diamond telescope constructed
- Last 14 modules to be bump bonded at IZM next week

New Geometry: 3D Diamond

After severe radiation damage all detectors are trap limited

- Mean free paths < 75μm
- Would like to keep drift distances smaller than mfp

Can one make conducting hole structures in diamond?

Collaboration of: ETH-Z, Manchester, Ohio State, Saclay, CERN in RD42

- Holes drilled with 800nm femto-second laser
- Operate planar (500V), 3D(no-holes) (25V), 3D (25V)
- Simultaneous comparison on same diamond
- Analysis/simulation first results

Conducting Columns - first look at efficiency

Seed Side

Exit Side

	Low Power	High Power
Low Speed	92.2 ± 1.4 %	78.7 ± 2.1%
High Speed	93.3 ± 1.3 %	87.6 ± 1.7 %

H. Kagan 19

Column Resistance

Columns conduct!

Resistivity $\sim 1\Omega$ -cm (somewhere between DLC and graphite)

Configure 3D cells as strip detector

- use VA2.2 electronics, test in beam at CERN
- Comparison of 3D(no-hole) w/Planar

Configure 3D cells as strip detector

- use VA2.2 electronics, test in beam at CERN
- Comparison of 3D w/Planar

Comparison of Planar (500V) and 3D w/holes (25V) - all cells

3D Charge in Fiducial Region

h3DdetMeanCharge

Comparison of Planar (500V) and 3D w/holes (25V) in Fiducial Region

hLandau%%24-39%%

Summary

- Construction of the largest diamond pixel tracker underway
- Many design issues were brought to light: speed, robustness, stability, segmentation, redundancy
- Many issues needed attention: metalization, electronics, sensor qualification, suppliers, bump bonding
- Some beliefs were modified or need more effort: recycling/re-use
- New geometry had initial successes:
 3D structures in diamond work