# Qualification of the CMS pixel readout chip for the phase 1 upgrade

# Marco Rossini on behalf of the CMS collaboration

Institute for Particle Physics, ETH Zürich

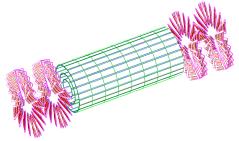
4. September 2013



Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich



#### The CMS pixel detector






The pixel detector is installed at the core of CMS

- ▶ 3 pixel hits for  $\eta$  < 2.1, 3 barrel layers (BPIX), 2 endcaps (FPIX)
- ▶ 66 M channels, 98 % still working
- Power consumption of 3.5 kW
- ▶ BPIX r = 4.4, 7.3, 10.2 cm, FPIX z = 34.5, 46.5 cm
- ▶ 100 × 150  $\mu$ m pixels, achieved resolution  $r\phi$  : 12.8  $\mu$ m, z : 24  $\mu$ m





#### The pixel detector upgrade

**ETH** zürich

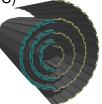
Changes to the detector in the phase 1 upgrade include:

▶ Increase number of pixel hits from 3 to 4

Innermost layer at r = 2.95 cm

Re-use power cables and readout fibres

▶ Ensure operation at  $\mathcal{L} = 2 \cdot 10^{34}$ 


► Upgrade of the front end electronics

(readout chip/ROC)





New endcap disk design



Addition of one barrel layer









Mounting strips




#### The present pixel readout chip





The current architecture has the following properties:

- 4160 pixels, bump-bonded to silicon sensor
- Zero suppressed signal charge readout
- Pairs of columns operate independently
- Each double column has a drain mechanism and buffers
- ▶ 40 MHz operation, trigger latency 3.9  $\mu s$
- Discarding of data that is not validated by the trigger
- Trigger verified hits readout via token passage
- Power consumption: 140 mW



# Motivation for the upgrade of the front end electronics





- Ensure efficient readout at 4-5 times the present hit rate
- Enable readout of increased number of modules with fibres from present 3 layer detector
- Improve lifetime of irradiated layers through higher charge sensitivity

### Changes in the ROC design





#### Maintaining efficiency at high rates:

- buffer cell size reduction to increase buffer capacity
- addition of a readout buffer to reduce dead time

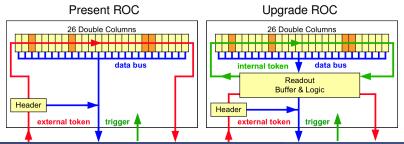
#### Increase bandwidth:

- Change to 160 MHz digital readout with PLL
- Use low power 8 bit ADC for signal charge readout

#### Improve charge sensitivity:

- threshold comparator redesign to reduce the timewalk
- layout changes to increase uniformity and reduce cross talk

#### Other changes:

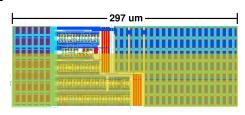

- Startup circuit to initializes the ROC registers
- Readback of programmed chip parameters

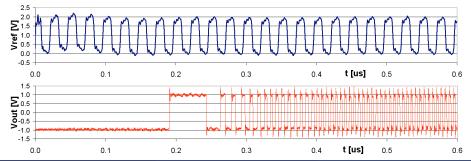
# Adapting internal storage for 4-5 times higher data rates





- Increased timestamp buffer size from 12 to 24
- Increased data buffer size from 32 to 80
- Buffer size determined through Pythia and GEANT based simulations
- Added readout buffer with 64 cells to deal with trigger validated DC waiting for readout token





#### PLL performance



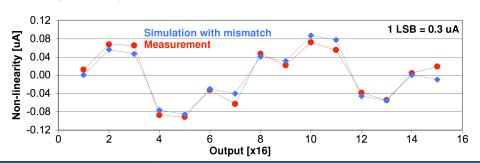


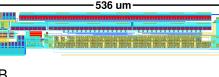
- Converts 40 MHz to 160 MHz
- Locks onto frequencies from 10 to 75 MHz
- ▶ Output clock jitter < 3 ps</p>
- ▶ Operating below -20°C





#### Pulse height ADC performance




- Successive approximation 8 bit ADC with S&H
- ► Clock frequency 80 MHz
- Conversion time 8 clock cycles
- ► Current consumption ≈ 1 mA



Explained by DAC ref. current mismatch



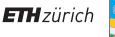


### Comparator redesign: Timewalk improvement


 Smallest signal in acceptance time defines the in-time threshold

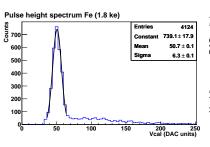
 New comparator reduces timewalk to < 25 ns (acceptance time)</li>

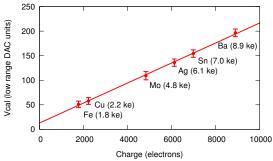
▶ Effectively lowers the threshold by  $\approx 700 \text{ e}^-$  w.r.t. current design


- ► CMS (in-time) threshold  $\approx$  3200 e<sup>-</sup>
- ► Threshold of upgrade ROC  $\approx$  1800 e<sup>-</sup>

 Increases maximum acceptable sensor irradiation




**ETH** zürich


# Calibration and confirmation of low threshold





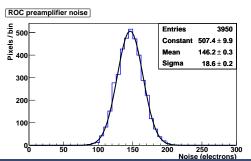
- Use well defined x-ray fluorescence lines for calibration
- Measured spectrum peak compared to internal test pulse
- ▶ Iron (Fe) spectrum confirms threshold < 1800 e<sup>-</sup>
- Calibration: parameters of linear relation
- ▶ Slope:  $51.3 \pm 2.8 \text{ e}^-/\text{Vcal}$ , offset:  $-940 \pm 50 \text{ e}^-$





#### Full qualification results

#### from an analysis of 14 ROCs


▶ Pixel defects: ≈ 0.3 %

▶ Preamplifier noise:  $\approx$  150  $\pm$  20 e<sup>-</sup>

Gain calibration:

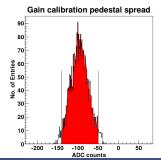
► Gain: ≈ 0.06 %

▶ Pedestal: ≈ 1300 e<sup>-</sup>



### **ETH** zürich



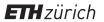

Qualification for present ROC

< 1.0 %

 $< 500 e^{-}$ 

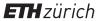
< 0.10 %

 $< 2500 e^{-}$ 




### Summary

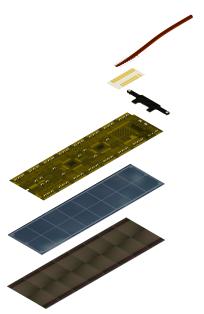





- The CMS pixel detector readout chip will be changed for the Phase 1 Upgrade
- Motivation for the change include
  - Increasing the number of pixel hits from 3 to 4
  - Increase readout bandwidth to allow for more channels using the same fibres
  - Maintain efficiency at new rate conditions
  - Increase the layer lifetime by lowering the threshold
- Evolutionary changes to achieve these goals have been made
- ROC prototype works very well and with expected performance
- Plans for the future:
  - Pilot system installed with present detector in long shutdown 1
  - ROC mass production in 2014
  - Phase 1 four pixel hit upgrade in extended winter shutdown 2016/17



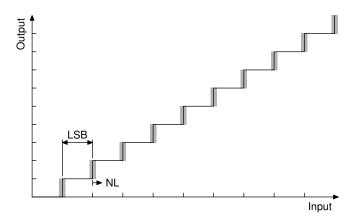



Thank you for your attention!





#### **Backup**


## Layer 1 module



### ADC non-linearity





