

Double-Sided Super-Module R&D for the ATLAS Tracker at HL-LHC – a Summary

9th Hiroshima Conference on Development and Application of Semicpnductor Tracking Detectors (HSTD9)

Hiroshima, September 2013

Outline:

- 1. Why: Global Requirements and Motivation
- 2. Recap of Super-Module scope and set-up
- 3. Electrical performance of the Super-Module
- 4. Mechanical status of the Super-module
- 5. The next steps:
 - what needs more work (cable bus)
 - design evolution
- 6. Comments and Summary

University of Geneva: G. Barbier, F. Cadoux, A. Clark, Y. Favre, D. Ferrère,

S. Gonzalez Sevilla, G. Iacobucci, D. la Marra, W. Seez,

M. Weber

KEK: Y. Ikegami, K. Nakamura, Y. Takubo. S. Terada, Y. Unno

University of Tsukuba: K. Hara

Tokyo Institute of Technology:O. Jinnouchi, K. TodomeTokyo University of Education:R. Nishimura, R. Takashima

Osaka University: M. Endo, K. Hanagaki

Global Requirements and Motivation

Global Requirements

- Compatible with performance specifications of ATLAS but in high pileup
- Compatible with other R&D projects involving the groups
 - ABCN 250 nm and future ABCN 130 nm + HCC development Sensor n-in-p R&D developments
- Build on merits of proven ATLAS tracker, identify and correct limitations

Guidelines

- True stereo space-point reconstruction using stereo strips
- Ability to provide z-overlap for modules (high alignment modes) if chosen
- Long term stability during operation and good placement accuracy
 Stiff supporting structures
- Minimize thermo-mechanical stress at all levels (low and compatible CTE)
 - Modules.
 - Local support and structure
- Modularity of components: (evolution of what learned on SCT)
 - Ease of prototyping, component supply, Q&A + rework, large-scale fabrication and construction
- Low material budget
- Good electrical performance at operating voltages > 500V

Project Status

- Backup option for ATLAS Tracker at HL-LHC
 (STAVE option is ATLAS base-line)
- Scope of R&D project using the ABCN 250 nm FE chip successfully completed
 - Separate summary publications on electrical and mechanical aspects currently in preparation
- Future developments will use the ABCN 130 nm FE chip and the HCC readout controller

ATLAS Phase II LOI CERN-2012-022 LHCC-I-023

Module Design and Status – 1

- Detectors are mounted back-to-back, true stereo reconstruction (400 μm sensor separation, will be 300 μm)
 - Space point determined by the module assembly with the precision of the jigs (build precision < ±1 µm rms)
 - Sensor (n-in-p Hamamatsu) 96 x 96 mm², (short) strips 24 x 0.075 mm², (long) strips 48 x 0.075 mm²
- Precise module location on a local structure
 - Centering bushes: origin + alignment (mounting precision on support ±10 μm)
- Bridge hybrid allows FE thermal path different from Si (stability consequences)

(NB: Direct mounting is feasible, thermal performance slightly deteriorated)

- Low CTE material and good thermal conductivity:
 - Si, TPG, CC, AIN
 - Low deformation @ -35°C (FEA)
- Hybrid pigtails + connector for electrical connections (option)
 - Modularity and flexibility
- Module assembly known and simplified WRT existing SCT modules in terms of procedure and QA:
 - > 950 SCT modules were fabricated by HPK and Seiko in Japan
 - 6 ABCN 250nm modules fabricated by industry (HAYASHI) + 3 in-house at KEK
 - Hybrids industrialized (Taiyo Industrial Co.)
 - > 650 SCT modules were fabricated by UniGe
 - 7 ABCN 250 nm modules fabricated in-house

(as built $2.4\% X_0$)

AIN facing

Super-Module Set-up

Module Design and Status – 2

Assembly Site	Module id	Sensor type	Hybrid version	Super- module	Comments
KEK	KMX-1000	FZ1 p-stop	v1		- long strip test module
KEK	KMX-1001	FZ1 p-stop	v1		
KEK	KMX-2002	FZ1 p-stop	v2		
KEK	KMX-2003	FZ1 p-stop	v2		- 5 dead ABCN-250 asics
KEK	KMX-2004	FZ1 p-stop	v2		- sensor crack during assembly
KEK	KMX-2005	FZ1 p-stop	v2	Yes	- industry
KEK	KMX-2006	FZ1 p-stop	v2	Yes	- industry
KEK	KMX-2007	FZ1 p-stop	v2	Yes	- industry
KEK	KMX-2008	FZ1 p-stop	v2	Yes	- industry
	•		•	•	
Geneva	GMX-1000	FZ1	v1		- "half module" used for irradiation studies - manual assembly of SMD's
Geneva	GMX-1001	FZ1	v1		- manual assembly of SMD's
Geneva	GMX-2002	FZ1 p-stop	v2	Yes	
Geneva	GMX-2004	FZ1 p-stop	v2	Yes	
Geneva	GMX-2006	FZ1 p-stop	v2	Yes	
Geneva	GMX-2007	FZ1 p-stop	v2		- electrical coupling between HV and $V_{\rm dd}$
Geneva	GMX-2008	FZ1 p-stop	v2	Yes	

- Table shows modules constructed in Japan and CH + modules used in 8module electrical super-module
- Module GMX-1000 used for radiation studies at level expected for LHC (previously reported)
 - Noise level after irradiation very satisfactory
 - ✓ Similar excellent results from STAVE R&D for single module
 - X But ... sensor leakage current high (low temperature operation)
 - x no test-beam results

see also ATL-UPGRADE-PUB-2011-002

- ✓ Typical individual module input noise (ENC) using direct powering (10 ASICS of a single hybrid shown):
 - <ENC> ~ 575 600
 - σ_{FNC} ~ 25
- x No modules used so far in test-beam

Super-Module Mechanical Design

CAD view of the SM (modules removed for clarity)

Mechanical studies discussed later (baseline ATLAS layout foresees 13 modules, studies for this R&D assumed 12 modules))

In parallel an 8-module electrical prototype has been developed, replicating all electrical and cooling aspects and allowing parallel prototype development

32 hybrids = 640 ABCN250 FE chips = 81920 channels

= 16 sensors

modules

Super-module Electrical Prototype – 8 modules

4 x larger than any other DC-DC implementation for HL-LHC R&D

Super-module Electrical Prototype – off-module interfaces

- BCC chip (common with stave R&D):
 - clock multiplier for 80 MHz readout
 - LVDS buffering, command decoder, configuration register
 - data multiplexing
- BCC Board (KEK) 1 each side of module
 - 2 BCC chips (packaged)
 - interface for 2 hybrids+ 2 DC-DC boards
 - service bus connection
 - prototype usage only

- SMB board (1 per Super-Module side)
 - Interface to DAQ (HSIO/USB), (similar for Seabas DAQ developed by KEK)
 - Provides DC-DC control, monitoring
 - Interface to HV, LV and data buses

Super-module Electrical Prototype – cable bus

Least developed aspect of SM program

- electrical
- mechanical

Intended as a first version prototype

initial conservative design

2 identical 765 mm long sets of LV, HV and data buses, 1 on each side of SM

- design and constructed at CERN
- HV bus drives HV for 8 sensors
- LV bus drives 10-12 V lines for DC-DC converters + 3.3 V BCC supply
- Data bus has 16 LVDS pairs (2 per module)
- Currently use Samtec connectors to BCC and SMC boards (excepting LV)

Expected evolution of cable bus considered later in this talk

Parameters of the service buses. Thicknesses and widths are given in mm.

I-V Performance of the 8 Modules

- HV provided individually to top and bottom sides of each module via HV bus
 - iSEG EHS-8210n-F (2 cards with 8 6U channels): 1 kV & 8 mA

- Good HV behaviour for all modules
 - Breakdown of DSM1 top side at 550V
 - DSM2, DSM4 and DSM6 have HV coupling between top and bottom sides (pin-holes in TPG coating?)
- Future designs will use single HV channel for several modules to reduce service material

Low Voltage Performance of the 8 Modules

- Low voltage supplied using a TDK supply
 - Constant voltage source maximum 20 V and 76 A
 - Supplied with common 10-12 V line to DC-DC converters
- Each hybrid supplied via DC-DC converter (developed at CERN)*
 - SM01C prototype using air-core toroidal inductor
 - Shielded to reduce EM emissions (10 μm Cu cover)
 - Some variabilty in DC-DC shielding and peaks at harmonics of 2 MHz carrier

G. Blanchot et al., TWEPP 2009 Proceedings, pp276-280.

Additional noise sources identified from the LV supply (~5 MHz)
 HSIO board (1-10 MHz) and the DAQ (42 MHz)

- Effect on noise measurements for modules difficult to quantify
- Consequence on noise of DC-DC not fully understood

Electric field on one hybrid in different

DAQ-HSIO configurations CFG-0: HSIO DAQ off CFG-1: HSIO DAQ on

CFG-2: HSIO DAQ on, external 12 V supply

Rhode & Swartz EM analyzer

Calibration of Modules – 1

- Initial channel-by-channel calibration of each ABCN 250 ASIC
 - Calibration delay
 - Discriminator threshold corrections
- Gain and noise (ENC) evaluation using threshold scans
 - 3-point gain test uses 3 input charges

3-pt gain for 1280 channels of a single hybrid column (10 ABCN ASICS)

Noise (~ 600 ENC) and gain (~ 110 mV/fC) are as expected

Calibration of Modules – 2

Dependence of ENC on hybrid temperature (2 hybrids)

- No corrections made
- $\Delta_{\rm ENC} \sim 1.37 \, {}^{\circ}{\rm C}^{-1}$

Noise measurements made at:

Coolant: ~ 5 °C

Hybrid: ~32 °C

Sensor: ~ 20 °C

ENC vs. V_{bias}

- Top side of each module shown
- Saturation knee consistent with V_D (ENC primarily from sensor)

Bias voltage [V]

Gain and Noise Measurements

Run configuration	Description	# DC-DCs enabled
RUN-CFG-0	- A single side of each module tested individually	2
RUN-CFG-1-top	- 8 module-sides (SM top-side) tested simultaneously	16
	- DC-DCs on opposite sides disabled	10
RUN-CFG-1-bot	- 8 module-sides (SM bottom-side) tested simultaneously	16
	- DC-DCs on opposite sides disabled	10
RUN-CFG-2	- 8 module-sides (SM top and bottom-sides) tested simultaneously	32
	- DC-DCs on opposite sides enabled	32

- When operated in CFG-2 mode, noise increases in range 10 – 60 ENC
- No significant DC-DC effect on same side (CFG-1)
- Deteriorated performance of module 6 (hybrids 3 and 4) is not understood
- Also deterioration of common mode noise for module 7

Results very satisfactory but further work on coupling of DC-DC converters needed between top and bot

Double Trigger Measurements

In collider operation, triggers are random and closely spaced triggers can occur

DTN measurements send 2 triggers separated by specified # of clock periods

- 2nd trigger read out
- If spacing close to pipeline length, the 2nd event records module occupancy at start of readout cycle of 1st event
- Measurements made as a function of input charge and for trigger separations of 120 - 150 clock periods

For 0.5 fC input, significant occupancy for a FEW hybrids (ASICS) in CFG-2 mode

Further work required in future design to mitigate this

Super-module Mechanical Design Features

Low thermo-mechanical stress: Avoid all CTE mis-match. Service bus separated, cooling pipe uses sliding joints. Precision of module on local support at room temperature ~ ±10 µm – surveyed Precision of local support on structure ~ ±10-20 µm

Module position at -35°C coolant determined by CTE and ∆T of local support

Mechanical prototype previously described (photos next page)

Super-module Mechanical Prototype

Concept validated with stressfree end-insertion interfacing dummy barrel locking system

Prototype previously described, no new results (publication in preparation)

Status and Outstanding Issues

Status:

Feasibility and practicability of Super-Module demonstrated (except possibly mechanical and electrical aspects of cable bus)

- Mechanical demonstration made
- Very successful multi-module electrical performance, although detailed studies of grounding and shielding remain important
- DC-DC architecture validated but EM interference needs optimization, as well as material (serial powering remains a valid option)
- Question of HV powering not yet addressed

Evolution: Evolution of sensor and module design with ABCN 130 nm and HCC submission

Evolution and implementation of read-out architecture and cable bus

Optimization of the mechanical support structure

Major test beam campaign with new design important

A few slides

Issues:

Adapt to evolutions of the ATLAS tracker layout

- : optimization of the service bus
- : LV services (DC-DC or SP powering)
- : HV services (4 modules per HV line or HV multiplexer)
- : Tradeoff between performance (material, noise pickup) and robustness

A Clark, HSTD9, September 2013

- 1.59%X₀ with 12 mm width CC hybrid bridge, 1.49% X₀ if hybrid glued to sensor

FEA of Module Design

Thermal

ABCN250: 0.3W per chip(80)
ABCN130: 0.15W per chip(40)
+ 0.8W per DC-DC(2)
+ 0.15W per HCC(2)

CO2 T (coolant) = -35 °C T(dry air) = 0 °C 2mm ID Ti cooling pipe

More optimistic - full coverage of module and cooling plate with thermal grease (1W/mK, 50 μm thick)

T (sensor) in range [-29.4, -31.1]

FEA of Module Design

Mechanical deformation

ABCN130: 0.15W per chip + 0.8W per DC-DC + 0.15W per HCC T (dry air) = 0 °C T (coolant) changed from T = +20 °C to T = -35 °C

Assembly: sensor-to-sensor \pm 1 μ m module fixation $< \pm$ 10 μ m

Stress in TPG base-board: < 16 Mpa for $\Delta T = 40$ °C (TPG tensile strength is 40 MPa)

Max. in-plane module deformation: $< 14.5 \mu m$

(< 1.5 μ m deformation for $\Delta T = 5$ °C, Important for long-term stability)

Max. out-of-plane module deformation: $< 1.5 \mu m$

(TPG baseboard)

CTE (TPG)	(1.2, 1.2, 25)	ppm/°K
CTE (Si)	3	ppm/°K
CTE (AIN)	4.5	ppm/°K
CTE (kapton)	18	ppm/°K
CTE (glue)	25	ppm/°K

Super-Module Design Evolution

Design Evolution

Super Module Thermo-Mechanical FEA

Integration of modules on the cooling plates and optimized LS

- 1-unit and 3-unit cooling blocks being considered
- CTE of back-bone and cooling plates: 0 -0.5 ppm/ 0 K (tuned) deflection between 0 and -25 μ m for $\Delta T = 40$ $^{\circ}$ C
- CTE of service bus: $18 20 \text{ ppm/}^{\circ}\text{K}$ deflection of order 1 mm for $\Delta T = 40 \,^{\circ}\text{C}$
- No "distortion" acceptable from service bus
- Service bus must be stabilized:
 - wavy bus attached at each module?
 - stabilized with bonded carbon fibre?

Thermo-mechanical behaviour to be understood:

- Modules on LS (kinematic mounting)
- Cable bus with respect to modules (the major unresolved issue)

Design Evolution

ABCN130 – Thermo-mechanical FEA at SM Level – Sag and Distortion

Maximum distortion including:

- gravitational sag
- service bus

55 μm

Maximum distortion including:

- gravitational sag
- service bus
- $T(coolant) = -35 \, ^{\circ}C$

57 μm

Worst-case: vertical (other orientations significantly less)

Final detailed result will be determined by:

- final service bus construction and attachment
- Number and rigidity of fixed supports
- CTE tuning of the LS and cooling blocks

Maximum stress: LS < 8 Gpa, mounted modules < 21 Gpa

Material Budget Estimation

Item	Rad. lengt	h [% X0]
Module with CC bridge (12mm width)	-	1.59
Module without CC bridge	1.49	-
Local support	0.18	0.18
Cooling plates	0.17	0.17 🤽
Bracket, inserts (interface to cylinder)	0.08	0.08
Cooling pipe (Ti 2mm)	0.04	0.04
Cable bus Al/Cu	0.11	0.11
Total	2.07	2.17

Conservative Needs optimization

Extracted from evolving excel spreadsheet

NB:

- The sensor thickness is considered 320 μm . If 250 μm one gains 0.15%.
- List above does not include the power cards: serial power interface or DC-DC card
- Module without CC bridge means that the hybrid flex is directly glued on top of the Si-sensor.

Comments and Conclusions

- 1. The double-sided super-module prototype R&D using ABCN250 chip now concluded (currently back-up option in ATLAS Phase II LOI)
 - Required noise performance on single module test box, combined module test box and
 8-module SM prototype achieved (DC-DC LV powering, individual HV powering)
 - Ground and shielding Improvements for next-generation SM identified
 - Position accuracy and mechanical (thermo-mechanical) stability for modules, and super-modules on LS demonstrated (design optimized for thermal stability)
 - Competitive material budget while retaining good thermal-mechanical behaviour

+

- **Design flexibility** enables parallelism of procurement and construction
- Construction modularity expected to minimize rework and component cost

Not discussed here

2. Preparation for realistic "pre-production" prototype described

- Use ABCN130, HCC and a dedicated service bus
- Optimization of service bus for selected LV and HV powering schemes a key issue
- Test beam studies of "pre-production" module before/after irradiation a priority

Many thanks for your attention

BACKUP

Bus features:

Length: 1250mmWidth: 20 - 22mm

Al layers: 2 x 50 microns (width from 11 to 20mm step)

• Cu layers: - 2 layers of 15 microns: LVDS + HV + DCS

- 1 mesh layers of 5microns for LVDS impedance

Bus material	X/X0 [%]
Al layers - GND + bias (100 microns)	0.0174
Kapton + glue (240 microns)	0.0136
Other Cu layers (eq. 10 microns)	0.0155
Stiffeners (22x14x0.3 mm3)	0.0029
Connector (estimate)	0.0050
Total (1 side)	0.0544
Total (2 sides)	0.1088

NB:

- Optimization of Al thickness vs resistivity and cable power loss 100µm Al → 1.8W
- Time scale for design + fab: 5 -6 months

If 60 μm Cu → 0.204% If 100 μm Cu → 0.291% On-detector noise due to local DC-DC converters and digital activities need to be considered when designing the module and the super-module

This has been investigated for the super-module prototype with success and some anticipations for grounding the hybrid, module and super-module to the surrounding is proposed:

Hybrid:

- -Technology: same as for current ABCN250
- Same for the two module sides

AXT Panasonic connector:

- Same as for IBL PPO
- From 10 to 80 pin contacts in 2 rows
- Pitch 0.4mm \rightarrow 19.5mm width for 80 pins.
- 0.3A per contact
- 1kV ok with 2 interleaved missing contact pins
- Insertion/removal 50 times guarantied

DC-DC layout

- -Targeting for future DC-DC converter board
- Estimated size: 20x13.5mm
- Height: should be reduced and hope for 5mm max
- Current estimates for 2 rows of 10 chips ABCN130: ~2.5A
- Local power dissipation due to inefficiency: 0.6 to 0.8W

Hybrid flex geometry

CC bridge geometry (300 μm thick)

NB:

- For prototype version: DC-DC board should be dismountable using SMD solder edge pins
- In production version: DC-DC should be integrated into the hybrid flex design (same GND, bias planes)

Service Bus Design Evolution

Alco flex made in fabrication for IBL (Genova – design, CERN – Fabrication)

- 4 Cu layers (50 μm): 15μm for HV, 15 μm LVDS1, 5 μm for GND ref, 15 μm LVDS2
- 2 Al layers (100 μm): 50 μm per power layer
- Multilayer of dielectric kapton/Pyralux (212.5 μm)
- Glue layers (85 microns)

From D. Ferrere (in discussion with Rui and in perspective of the Upgrade):

- The 4 Cu-layers are standard process that could be outsourced
- The 2 Al-layers needs to be processed with CVD for Chrome and Copper (vias)
- Maximum length that could be processed by Rui's workshop 1.5m (not an issue / Super module)
- Flex production simpler than for IBL's (no special cutting for some layers like the wings...)
- Wavy flex for CTE mismatch with local support. Could be thermally formed in a press!

IBL production batch

Wing part (1 layer)