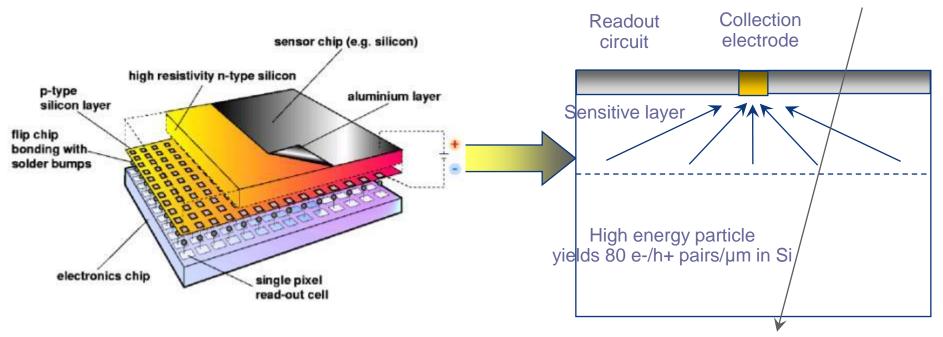
Monolithic Detectors for High Energy Physics

Walter Snoeys


Acknowledgements

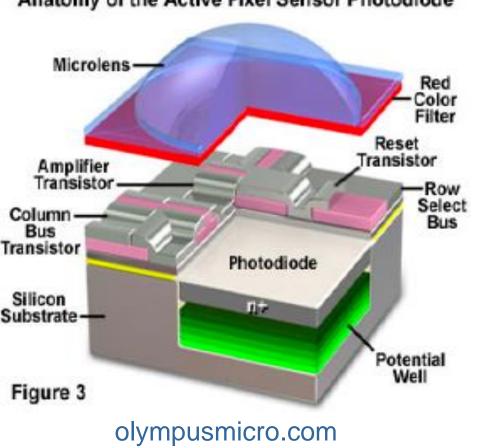
- Collegues in ESE group and Alice Pixel, LHCb RICH, NA57, WA97, RD19, TOTEM and LePIX Collaborations
- S. Parker, C. Kenney, C.H. Aw, G. Rosseel, J. Plummer
- E. Heijne, M. Campbell, E. Cantatore, ...
- K. Kloukinas, W. Bialas, B. Van Koningsveld, A. Marchioro...
- A. Potenza, M. Caselle, C. Mansuy, P. Giubilato, S. Mattiazzo,
 D. Pantano, A. Rivetti, Y. Ikemoto, L. Silvestrin, D. Bisello, M. Battaglia
- T. Kugathashan, C. Tobon, C. Cavicchioli, P. Yang, M. Mager, F. Reidt, J. Van Hoorne, P. Riedler, H. Hillemans, L. Musa ...
- P. Chalmet, H. Mugnier, J. Rousset
- A. Dorokhov, C. Hu, C. Colledani, M. Winter
- The conference organizers

											11		115									
													1.12									
																		- 1				
				- 1	-	-		-	-		-	-	- 1	- 1	- 1	- 1	-	-	- 1	- 1	-	

MONOLITHIC DETECTORS : definition

Integrate the readout circuitry – or at least the front end – together with the detector in one piece of silicon

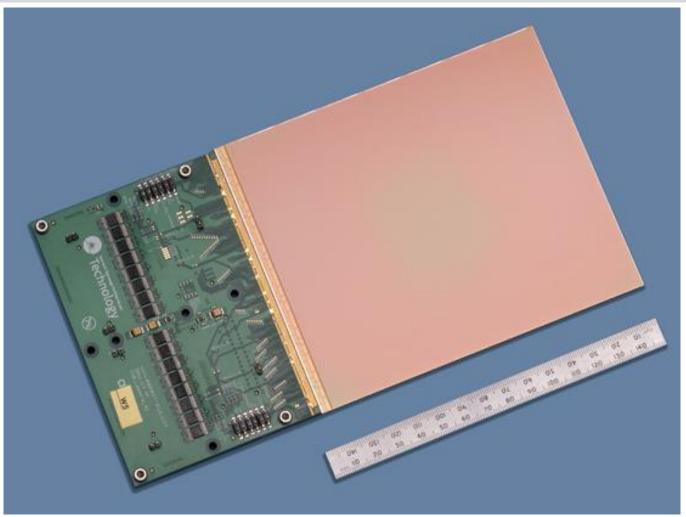
The charge generated by ionizing particle is collected on a designated collection electrode



MONOLITHIC DETECTORS

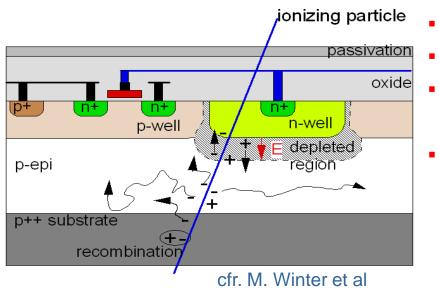
- Easier integration, lower cost, possibly better power-performance ratio
- Promising not only for pixel detectors, but also for full trackers
- Potential of strong impact on power consumption and hence on material in high energy physics experiments
- In two experiments
 - DEPFET pixels in Belle-II (see S. Tanaka presentation this session)
 - MAPS in STAR experiment both relatively slow (row by row) readout, not always applicable
- Not yet in LHC, considered for upgrades (eg Alice) and for CLIC/ILC
- Will concentrate on CMOS monolithic detectors

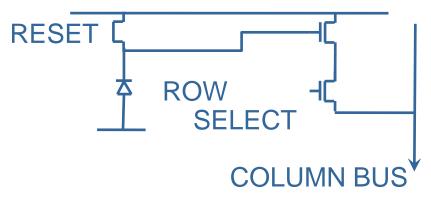
CMOS Monolithic Active Pixel Sensors


- Anatomy of the Active Pixel Sensor Photodiode
- Have changed the imaging world
- **Reaching:**

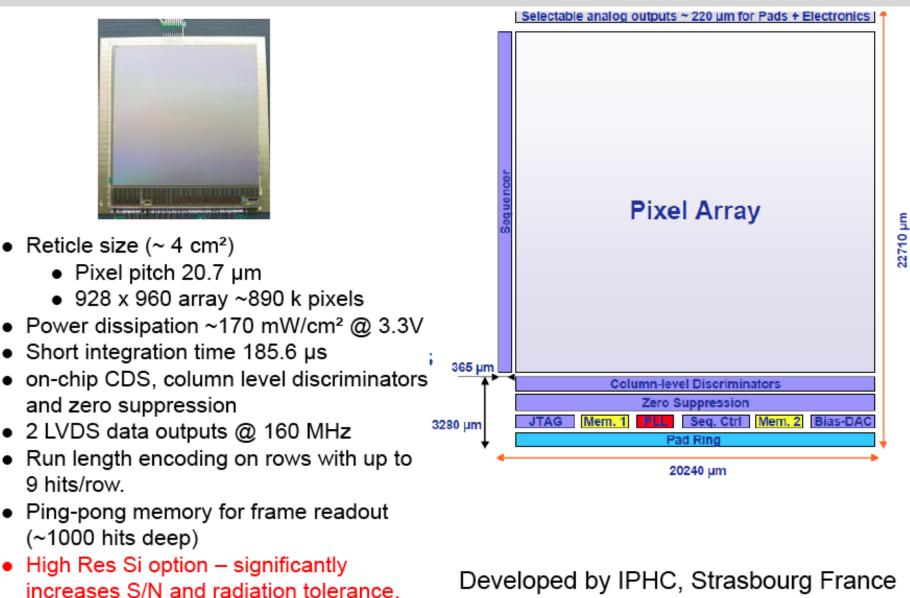
. . .

- less than 1 e⁻ noise (cfr S. Kawahito, pixel 2012)
- > 40 Mpixels
- Wafer scale integration


WAFER SCALE INTEGRATION by STITCHING


Courtesy: N. Guerríní, Rutherford Appleton Laboratory Vth School on detectors and electronics for high energy physics, astrophysics, and space and medical physics applications, Legnaro, April 2013

Traditional Monolithic Active Pixel Sensors (MAPS)


Example: three transistor cell

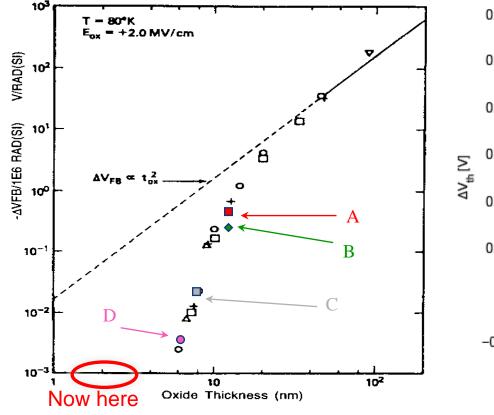
- Commercial CMOS technologies
- Very few transistors per cell
- Pixel size : 20 x 20 micron or lower
- Traditionally:
 - No back bias:
 - charge collection by diffusion
 - more sensitive to displacement damage in epitaxial layer/bulk
 - Only one type of transistor in pixel (unless triple well or transistors in collection electrode)
 - Rolling shutter readout
 - Very simple in-pixel circuit (3 or 4 transistors)
 - Serially, row-by-row, not very fast

ULTIMATE in STAR

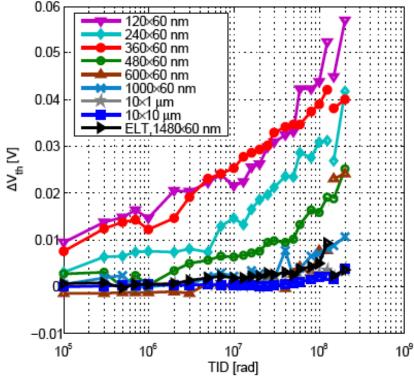
CERN

W. Snoeys – 9th Hiroshima Symposium on Tracking Detectors – September 2013

7

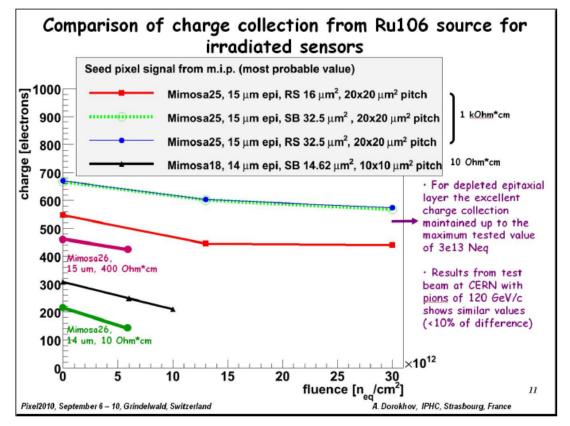

What does high energy physics need ?

- Radiation tolerance of circuit and sensor
 - Ionizing radiation up to ~10⁸ Mrad
 - Non-ionizing (displacement damage) up to ~10¹⁶ n_{eq}/cm²
 - Circuit typically more sensitive to ionizing radiation, Sensor to nonionizing radiation
- Single particle hits instead of continuously collected signal
 - 100% efficiency or close (fill factor close to 1)
 - Time stamping
 - Often more complex in-pixel circuit, full CMOS in-pixel desirable
- Low power consumption as the key for low mass
 - Now ~ 20 mW/cm² for silicon trackers and > 200 mW/cm² for pixels
 - Even with enhanced detector functionality for upgrades, power consumption cannot increase because of the material penalty



CMOS and Ionizing Radiation Tolerance

- The industry standard for high volume low cost circuit manufacturing
- Transistor radiation tolerance comes for free :


After N.S. Saks, M.G. Ancona, and J.A. Modolo, IEEE TNS, Vol. NS-31 (1984) 1249 Present day transistors fall on the curve measured in 1984 on oxide capacitors

For example: transistors in 65nm CMOS After S. Bonacini et al. If minimum size devices are avoided, small radiation induced shift even after extreme doses

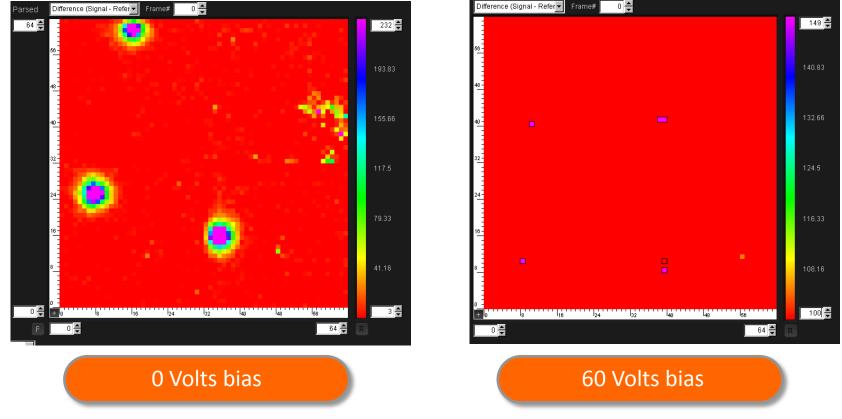
Collection by diffusion and radiation tolerance

(A. Dorokhov et al., IPHC, France)

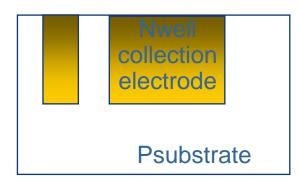
Collection by drift for radiation tolerance beyond 10¹³ n_{eq}/cm²!

=> need depletion and (some) back bias, for instance using HV CMOS (see next presentation)

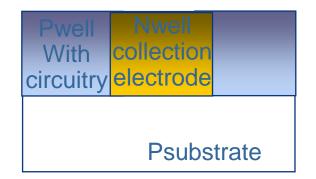
CERN


Tolerance against displacement damage

- Reverse bias to obtain collection by drift in a depleted region is essential for tolerance to fluences beyond 10¹³ n_{eq}/cm²
- Reverse bias also helps:
 - Signal-to-Noise (see C. Cavicchioli's presentation)
 - Lower capacitance
 - Often larger collection depth (larger depletion)
 (but not necessarily if epitaxial layer over highly doped substrate)
 - Lower cluster size (see next slide), very important for architecture
 - Lower collection time
- Can also work on other parameters to ease/enhance depletion depth:
 - Higher resistivity and thickness of the epitaxial layer


DRIFT vs DIFFUSION – influence on cluster size

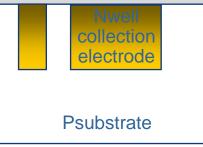
Measurement on LePIX prototypes (50x50 micron pixels !)



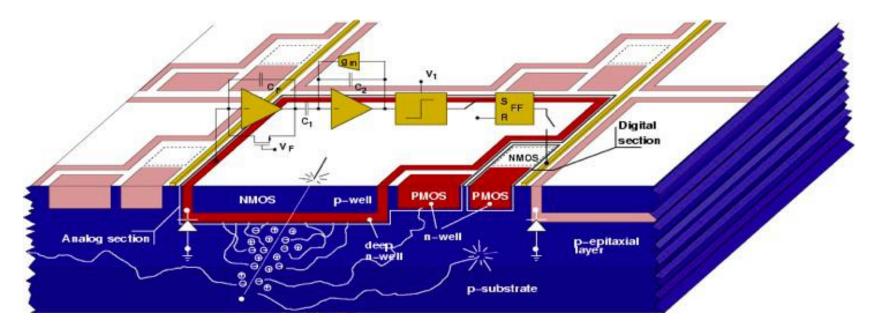
- Diffusion: at zero bias, incident protons generate on average clusters of more than 30 50x50 micron pixels.
- Drift: for significant reverse bias (60V) cluster reduced to a few pixels only

MORE COMPLEX CIRCUITRY: device solutions

- Additional N-diffusion will collect and cause loss of signal charge
- Need wells to shield circuitry and guide charge to the collection electrode for full efficiency

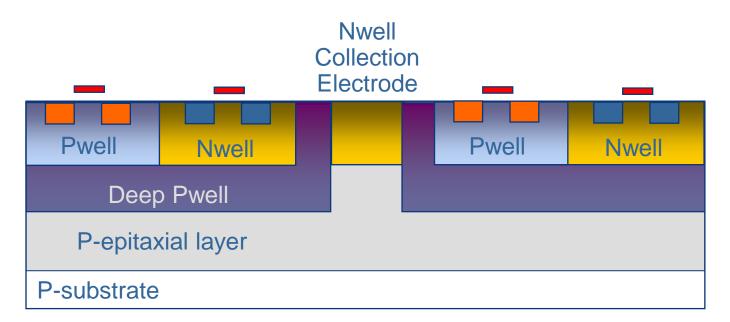


- Pwell with NMOS transistors next to Nwell collection electrode junction on the front
- Used by MAPs but important diffusion component at small bias
- Large fields for more significant reverse bias
- Uniform depletion with small Nwell and large Pwell difficult
- NMOS only in pixel

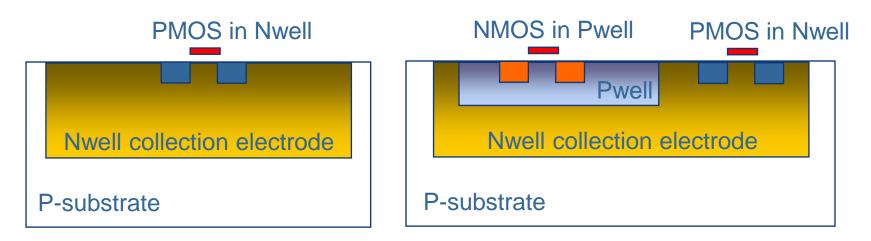


No shielding well

G. Vanstraelen (NIMA305, pp. 541-548, 1991)

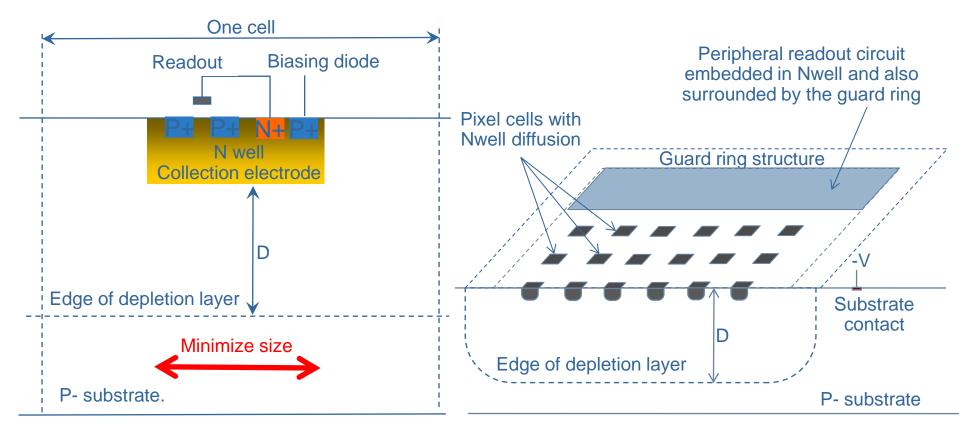


- V. Re et al., superB development: Nwell containing PMOS transistors not shielded
- Nwell much deeper than rest of circuit to limit inefficiency


JUNCTION ON THE FRONT with DEEP PWELL

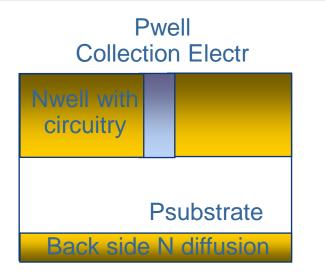
- Deep Pwell shields Nwell from the epitaxial layer
- Example: ALICE ITS upgrade (see C. Cavicchioli's presentation)
- Difficult to deplete epitaxial layer under Pwell far from Nwell collection electrode
- So, either very simple in-pixel circuit or important diffusion component in the charge collection

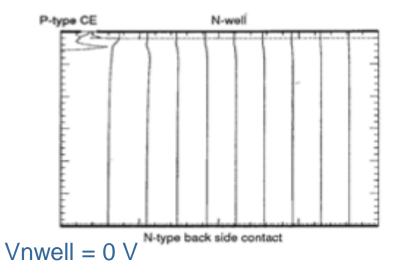
CIRCUIT INSIDE COLLECTION ELECTRODE



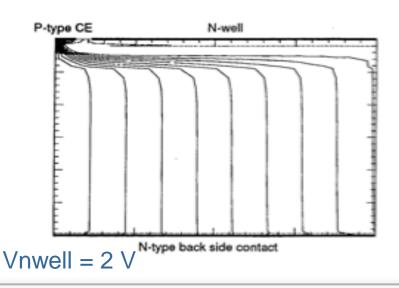
All circuitry in Nwell, with or without triple well for full CMOS or only PMOS in the pixel (eg LePix)

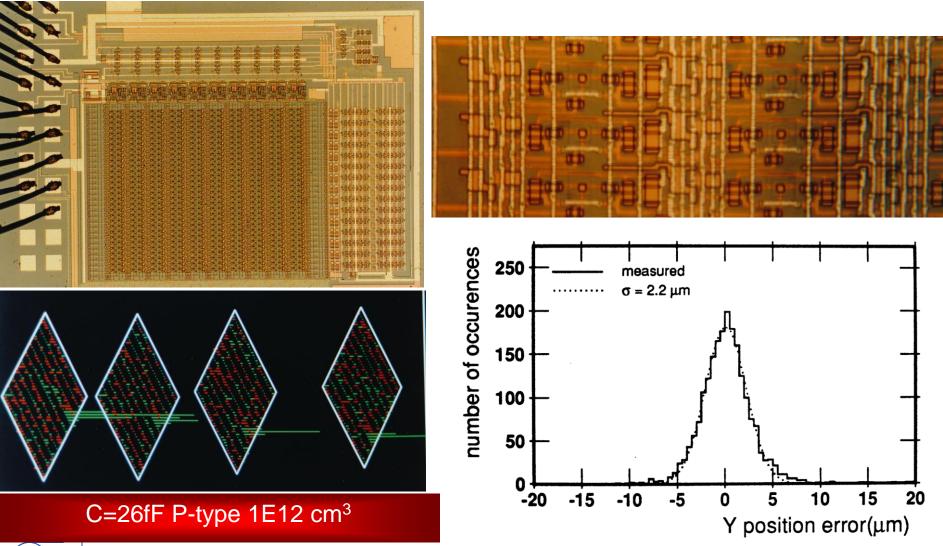
- Risk of coupling circuit signals into input
- In-pixel circuit simple in small collection electrode for low C by
 - 'rolling shutter' readout as in MAPS,
 - special architectures (see below), or
 - use it as smart detector in hybrid solution (cfr I. Peric)


All in NWELL: LePIX: 90nm CMOS on high resistivity

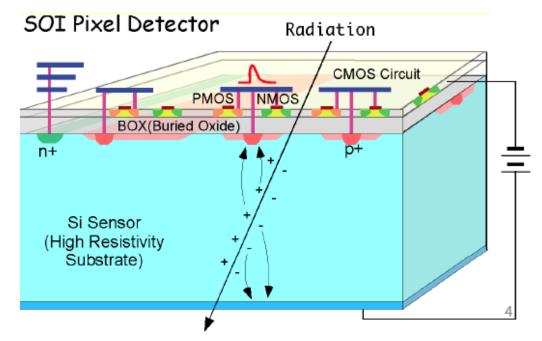


Try to maximize Q/C: small collection electrode, and high resistivity substrate of several 100 Ωcm, 40 microns depletion for ~40 V Collection by drift for radiation tolerance


WELL WITH JUNCTION ON THE BACK

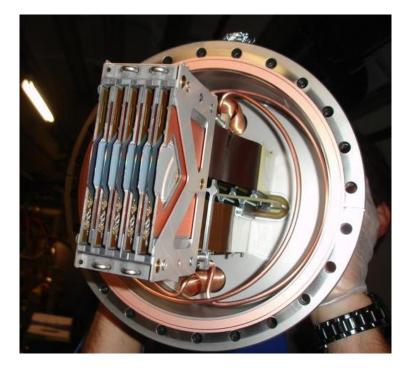

Wells with junction on the back

- Need full depletion
- Works well, a few V on the Nwell diverts the flow lines to the collection electrode
- Stanford-Hawaii development
- Double-sided process difficult, not really compatible with standard foundries

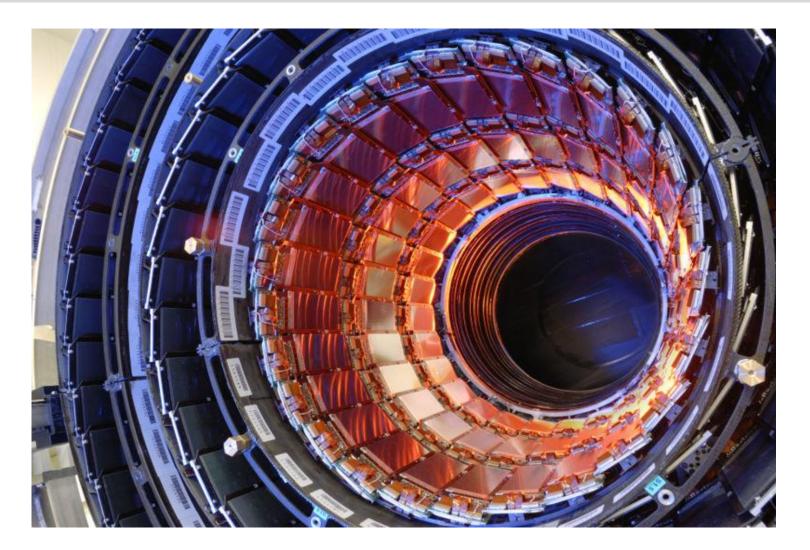

WELL WITH JUNCTION ON THE BACK

C. Kenney, S. Parker (U. of Hawaii), W. Snoeys, J. Plummer (Stanford U) 1992

SILICON ON INSULATOR (SOI)

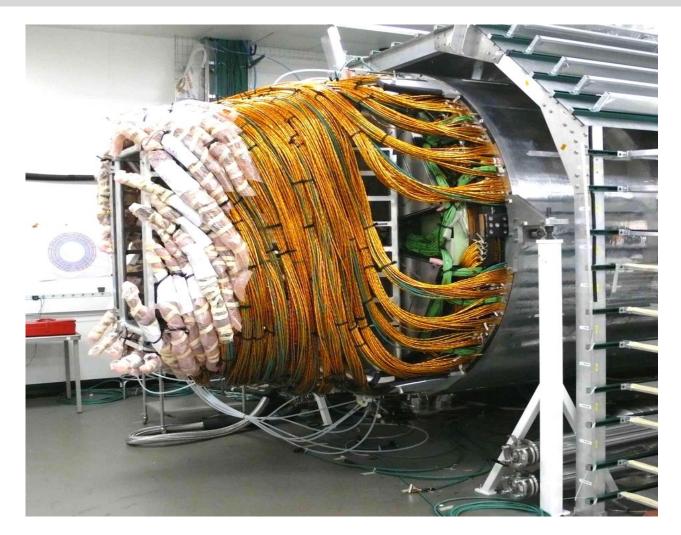

Y. Arai et al (see presentations later this session)

- Very impressive technology development ... offers good Q/C
- High weak inversion slope (<70 mV/decade)
- BOX causes reduced radiation tolerance, double BOX improves this, further development in progress.
- Is one of the ways to integrate large amount of in-pixel circuitry


LOW POWER IS THE KEY TO LOW MASS

- Services: cables, power suppliers, cooling etc... represent significant effort and fraction of the total budget
- Subject to severe spatial constraints, limit for future upgrades
- Power often consumed at CMOS voltages, so kWs mean kAs
- Increasing power for upgrades not really an option even if more functionality

- ~ 20 mW/cm2 for silicon trackers
- ~ 2-300 mW/cm2 for silicon pixels
- Even if power for detector is low, voltage drop in the cables has to be minimized: example analog supply one TOTEM Roman Pot:
- ~ 6A @ 2.5 V
- ~100m 2x16mm² cable: 0.1 ohm or 0.6 V drop one way
- 26kg of Copper for ~ 15 W

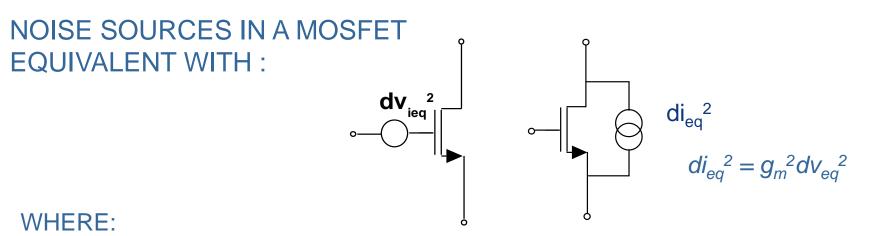

The CMS Tracker before dressing...

A. Marchioro / CERN

... and after

33 kW in the detector and... > 30 kW in the cables !

A. Marchioro / CERN



Power consumption: 3 components

- Analog:
 - Determined by collected charge over capacitance (Q/C) in the pixel => pixel sensor optimization
- Digital:
 - Determined by on-chip architecture & cluster size
 - Architecture:
 - Rolling shutter : relatively slow
 - Other architectures with in-pixel binary front-end:
 - Data driven (eg priority encoder for ALICE) (significant amount of in-pixel circuitry)
 - Projections along several axis (Y. Ono & P. Giubilato, pixel2012)
- Data transmission off-chip:
 - Determined by cluster size unless data reduction by clustering algorithm

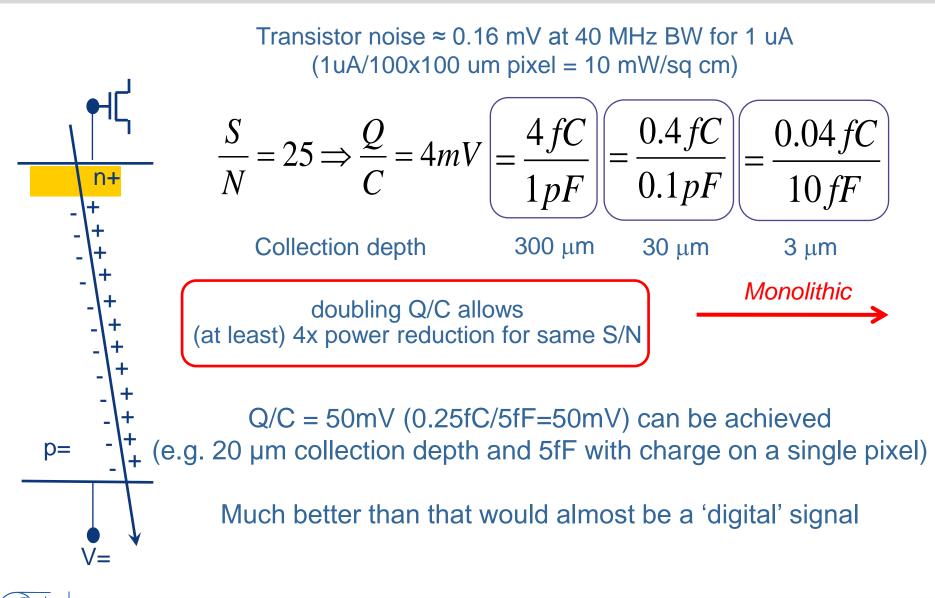
ANALOG POWER CONSUMPTION

In weak inversion (WI):

 $g_m \sim I$ $dv_{eq}^2 = (K_F/(WLCox^2 f^{\alpha}) + 2kTn/g_m)df$

In strong inversion (SI) :

$$g_m \sim \sqrt{I}$$
 $dv_{eq}^2 = (K_F/(WLCox^2 f^{\alpha}) + 4kT\gamma/g_m)df$

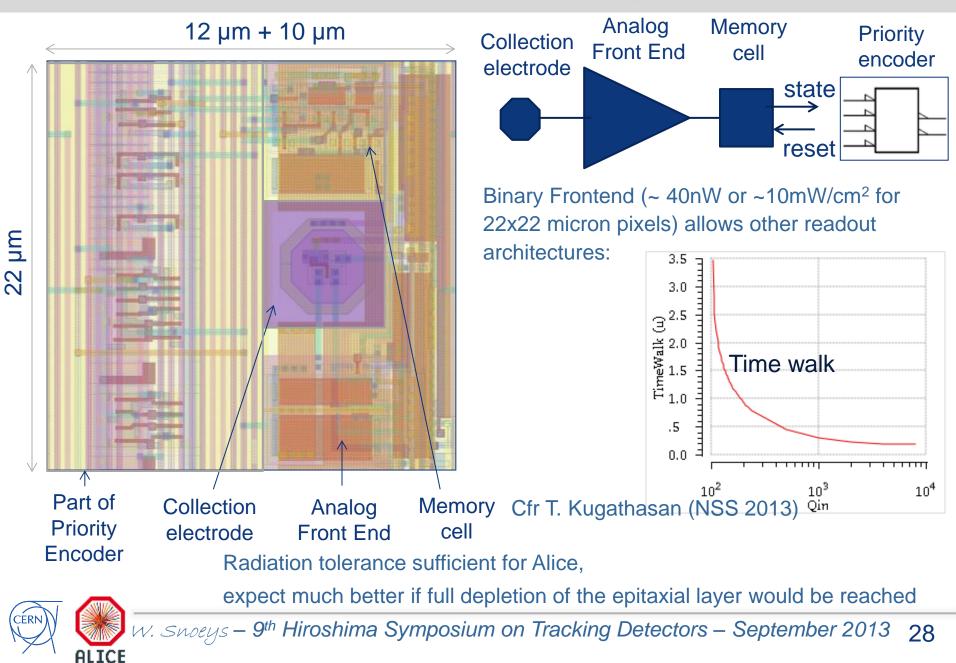

Signal to noise ratio and analog power consumption

$$\frac{S}{N} \sim \frac{Q/C}{\sqrt{gm}} \sim \frac{Q}{C} \sqrt[m]{I} \sim \frac{Q}{C} \sqrt[m]{P} \text{ with } 2 \le m \le 4$$

or
$$P \sim \left\{\frac{\frac{S}{N}}{\frac{Q}{C}}\right\}^{m} \text{ with } 2 \le m \le 4$$

For constant S/N:
$$P \sim \left[\frac{Q}{C}\right]^{-m} \text{ with } 2 \le m \le 4$$

Signal charge/detector capacitance (Q/C) is the figure of merit for the sensor determining the analog performance/power consumption

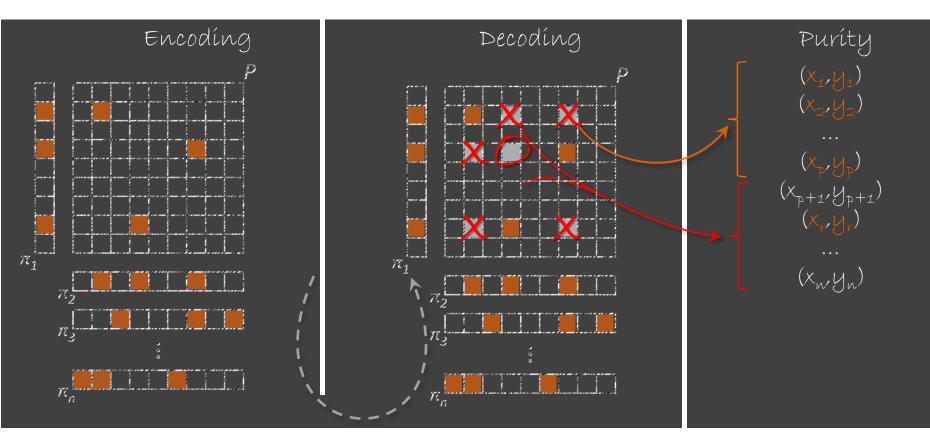

m = 2 for weak inversion up to 4 for strong inversion

High Q/C for low analog power

27

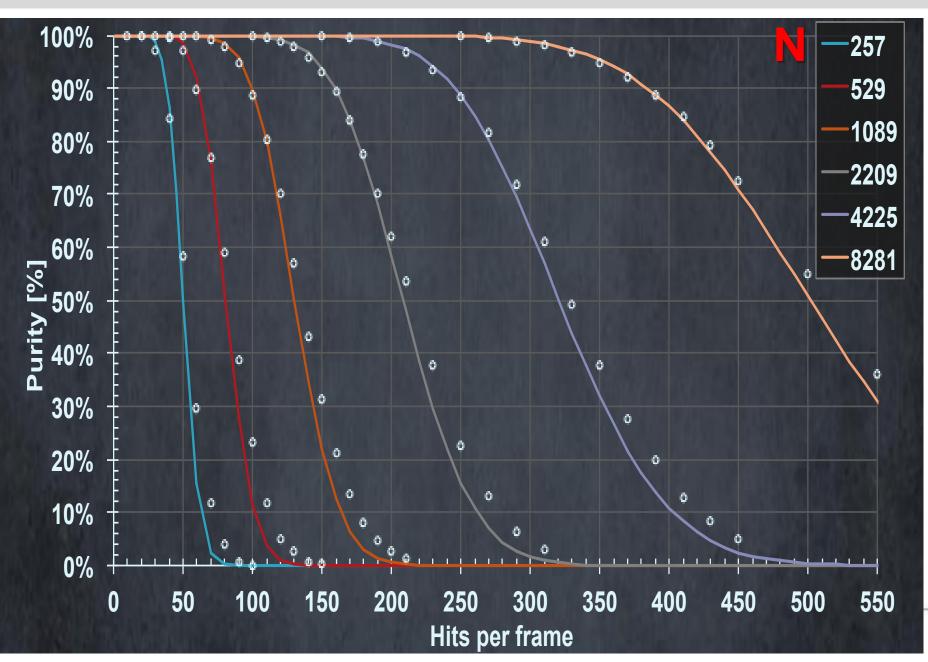
Binary Front End + Architecture : eg Priority Encoder

ALICE ITS UPGRADE PROJECT


- ALICE: Pixel sensor
 - ~ 100mV distributed over a few pixels
 - Could we get to digital signal by further optimization (almost fully eliminating power consumption)?
- Analog front end design: 40nW*250 000 pixels = 10 mW/cm²
- Digital: looking at solution with similar power consumption
- If analog front end architecture combination successful, power for data transmission off-chip may very well be dominant
- Trying to approach strip level power consumption per unit area and definitely stay below 100mW/cm²
- Radiation tolerance sufficient for Alice, expect much better if full depletion of the epitaxial layer would be reached

ARCHITECTURE FOR SIMPLE IN-PIXEL CIRCUIT

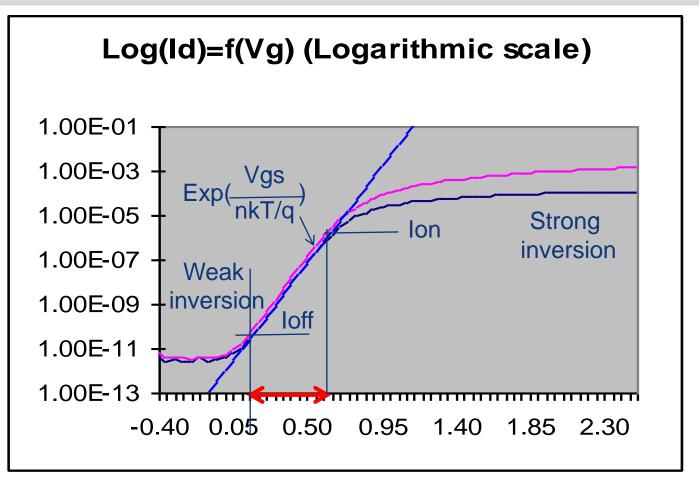
P. Giubilato Pixel 2012 : Orthopix


Reduce number of signals using projections (also reduce power that way !) Minimize ambiguities by requiring orthogonal projections

For 4 projections reduction from N² to 4N

PURITY OF RECONSTRUCTION

CONCLUSIONS

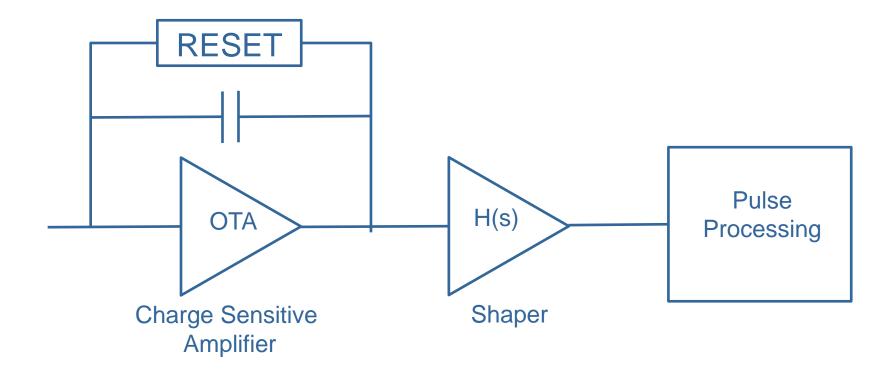

- Monolithic detectors have revolutionized imaging in general
- High Energy Physics requires:
 - Radiation tolerance of circuit and sensor, need thin sensors and charge collection by drift
 - 100% efficiency, often more complex in-pixel circuit
 - Low power consumption => low C, or small collection electrode
- Combining complex in-pixel circuitry and radiation tolerance to extreme levels still a challenge in commercial processes, but progress is being made
 - All in nwell: simple in-pixel circuit otherwise higher C
 - Junction on the front: simple in-pixel circuit otherwise full depletion difficult or high C
 - Junction on the back: back side processing
 - SOI: radiation tolerance
- Special architectures could provide a way out

CONCLUSIONS

- Low power consumption
 - Analog : low Q/C essential
 - Digital : architecture and small cluster size
 - Data transmission off-chip or off-detector may very well be dominant
- Monolithic detectors slowly make their way in HEP
- Have not mentioned SPADs, CCDs, and some other developments

DIGITAL SIGNAL by further optimization ?

Slope in weak inversion 60-90 mV/decade, for lon/loff=10⁴ on a single pixel => 250-360mV Would practically eliminate analog power consumption


THANK YOU !

BACKUP SLIDES

STANDARD PULSE PROCESSING FRONT END

ENC: total integrated noise at the output of the pulse shaper with respect to the output signal which would be produced by an input signal of 1 electron. The units normally used are rms electrons.

<u>RESET</u>: switch or high valve resistive element

CERN

ANALOG POWER

'standard' front end noise equations

$$ENC_{TOT}^{2} = ENC_{d}^{2} + ENC_{f}^{2} + ENC_{0}^{2}$$
where Transconductance gm related to power consumption
thermal $ENC_{d}^{2} = \frac{4\eta kTC_{t}^{2}}{gmq^{2}\tau_{s}} \cdot X(n)$ $X(n) = \frac{B(\frac{3}{2}, n - \frac{1}{2})n}{4\pi} (\frac{n!^{2}e^{2n}}{n^{2n}})$
1/fnoise $ENC_{f}^{2} = \frac{KF_{F}}{C_{ox}^{2}WL} \frac{C_{t}^{2}}{q^{2}} \cdot Y(n)$ $Y(n) = \frac{1}{2n} (\frac{n!^{2}e^{2n}}{n^{2n}})$
shot noise $ENC_{o}^{2} = \frac{2qI_{o}\tau_{s}}{q^{2}} \cdot Z(n)$ $Z(n) = \frac{B(\frac{1}{2}, n + \frac{1}{2})}{4\pi n} (\frac{n!^{2}e^{2n}}{n^{2n}})$

INFLUENCE OF SHAPER ORDER n

n	1.00	2.00	3.00	4.00	5.00	6.00	7.00
X(n)	0.92	0.85	0.95	1.00	1.11	1.17	1.28
Y(n)	3.70	3.41	3.32	3.28	3.25	3.23	3.22
Y(n) Z(n)	0.92	0.63	0.52	0.45	0.40	0.36	0.34

- Ref.: Z.Y. Chang and W.M.C. Sansen : ISBN 0-7923-9096-2, Kluwer Academic Publishers, 1991
- Ref. 2 : V. Radeka "Low-noise techniques in detectors" Ann. Rev. Nucl. Sci. 1988, 38, 217-77
- Ref. 3 : E. Nygard et al. NIM A 301 (1991) 506-516

