A Systematic 3D Simulation Study of BNL's 3D-Trench Electrode Detectors

A. Montalbano 1 D. Bassignana 2 W. Chen 3 Z. Li 3 S. Liu 3,4 D. Lynn 3 G. Pellegrini 2 D. Tsybychev 1

¹Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA

²National Microelectronics Centre, Barcelona, Spain

³Physics Department, Brookhaven National Laboratory, Upton, NY, USA

⁴School of Nuclear Science and Technology, Xi'an Jiaotong University, China

2 September, 2013

Table of Contents

- Introduction
- High Energy Devices
- Photon Science Devices
- Prototype Measurements
- Conclusion

Introduction - Past Silicon Pixel Detectors

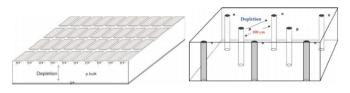


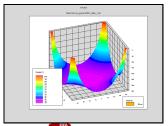
Fig 1a. Typical planar pixel detector.

Fig 1b. Standard 3-D detector.

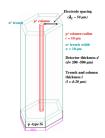
C. Kenny, S. Parker, et al. IEEE, NS46 (4), 1999

- Planar pixels (left) have limited depletion zone close to the electrodes at moderately high voltages after high radiation exposure
- The Column 3D detector (right) solved this problem, but introduced a saddle point in the potential and nonhomogeneity in \vec{E} , meaning it introduced a θ dependence. Stony Brook University

Advantages of 3D

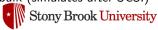

- Decouples depletion from thickness
- Reduces depletion voltage by decreasing the electrode spacing

Column 3D Limitations


- High electric field along junction at the column
- Columns create inhomogeneities in \vec{E}

We want to:

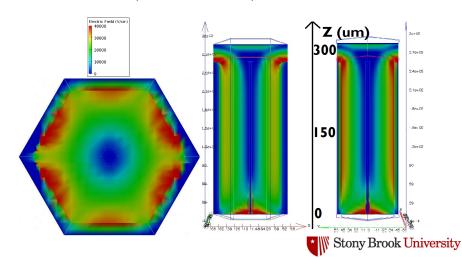
- Remove the saddle point in the potential.
- ullet Remove heta dependence
- Make each cell independent of its neighbors



Our High Energy 3D-Trench Electrode Detector

- Z. Li, NIMA Vol 658, Issue 1 (2011)
 - Electrode spacing: 50 μm
 - Shape: Hexagon

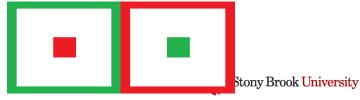
- Depth: 500 μ m Simulated: 300 μ m
- Width of trench: 10 μm
- Diameter of column: 10 μm
- Depth of doping: Simulated $270/300 \ \mu m$
- When simulated with radiation, treated after $\Phi_{eq} = 10^{16} \ 1 \ \text{MeV} \ n_{eq}/\text{cm}^2$
- Doping:
 - ▶ p+ column
 - n+ trench
 - p type bulk (simulates after SCSI)



Simulation Specifics

- Used commercial software from Silvaco (TCAD's programs Devedit 3d, Device 3d, Atlas, etc) to simulate the detectors' electrical properties.
- Simulate the detector after high radiation by changing the effective doping concentration of the bulk.
- In the future, will use explicit radiation defects in Silicon
- This gives us first order effects.

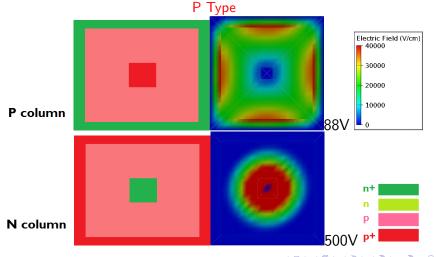
Electric Field at Full Depletion - 95V


Full Depletion Voltage was simulated to be 95 V. Electrode spacing is $50\mu m$ Treated with $\Phi_{eq}=10^{16}~1$ MeV n_{eq}/cm^2

The different types of detectors possible

The different doping does not matter in the column detectors, since differences would just correspond to a translation.

- For our detectors, different doping will cause significant changes in the potential's shape
- We choose:
 - Doping of the center column
 - Doping of the cylindrical-shaped trench in each cell
 - Doping of bulk n (green) and p (red)
- Outer trench is n+ and center column is p+
- Outer trench is p+ and center column is n+

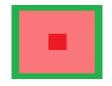


4 Combinations

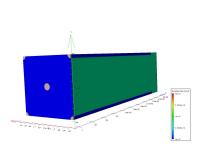
- Now for both of the previous two, there are two more versions with the type of doping of the bulk Si
 - n-type
 - p-type
- Under high radiation, the bulk material may undergo space charge sign inversion (SCSI). This "type inversion" turns n-type doping into "p-type equivalent"
- This determines where the junction is, at the trench or at the column
- Junction at the column makes high electric field, while having the junction at the trench allows for more uniformity and a lower absolute maximum \vec{F}

Electric Fields, Fully Radiated

The electrode spacing is 50 μm , and is simulated with $\Phi_{eq}=10^{16}$ 1 MeV ${\rm n}_{eq}/{\rm cm}^2$. Top is fully depleted, bottom is not.

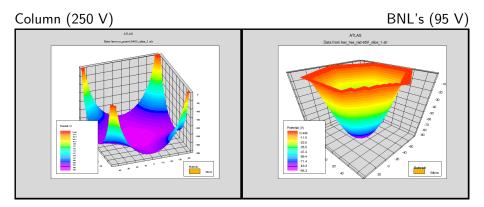

Type Comparison Results

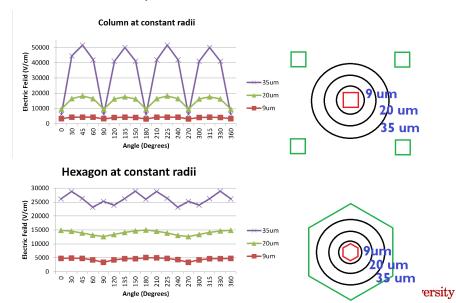
The electrode spacing is 50 μm , and is simulated with $\Phi_{eq}=10^{16}~1~{\rm MeV}~{\rm n}_{eq}/{\rm cm}^2$


Table: Comparison of Different Doping schemes

column, bulk, trench	V_{dep}	Junction	Dep Direction
n+, n, p+	90 V	trench	inward
n+, p, p+	> 500 V	column	outward
p+, n, n+	> 500 V	column	outward
p+, p, n+	88 V	trench	inward

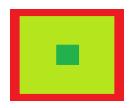
After $\Phi_{eq}=10^{14}1$ MeV n_{eq}/cm^2 the n-type will type invert, so we might as well start off with p-type. Therefore, we use p+ column with p-type bulk and n+ trench.


Column 3D Detector

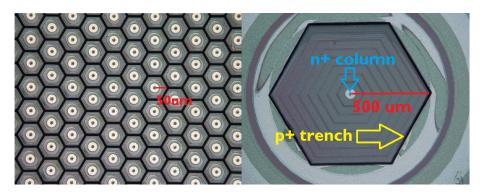

- Electrode spacing: 50 μm
- Depth: 300 μm
- Shape: Column
- ullet Diameter of doping columns: 10 μm
- When simulated with radiation, treated after $10^{16} n/cm^2$
- Doping:
 - ▶ p+ center column
 - ▶ n+ corner columns
 - p type bulk (simulates after SCSI)

Column Vs. BNL's

Potential at Full Depletion

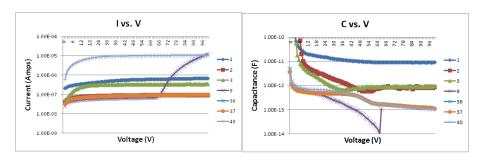


Electric Field's θ Dependence

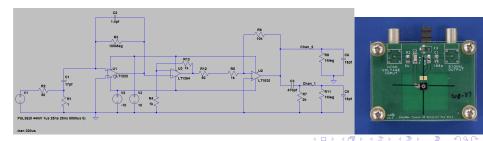

Photon Sciences

- Also useful for X-ray detection at the National Synchrotron Light Source II at Brookhaven National Laboratory.
- The natural separation of cells is good for spectrometry
- Radiation is no longer an issue, simulated at a much lower bulk doping concentration.
- The cell size is $\approx 500 \mu m$ which means it is much larger than the High Energy cells (x10 larger)
- In our first prototype the Trench and center column have a width of 10 μm and a depth of 200 μm
- Chose n+ column with n-type bulk and p+ trench

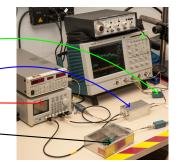
Prototypes


Being manufactured by CNM (National Centre for Micro-electronics)

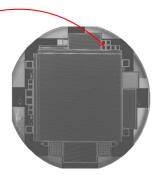
Array of High Energy pixels on left, and a single Photon Science pixel on right.


Stony Brook University

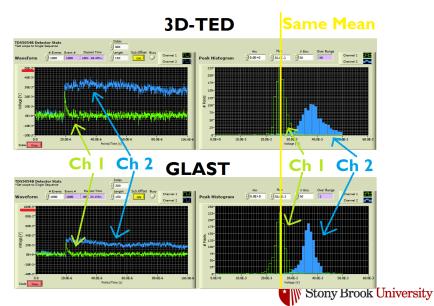
Electric Properties of Good Prototypes


Charge Collection Efficiency Measurements

- Am241 Source placed on detector inside Faraday cage
 - Signal is readout by a commercial cremat preamplifier
 - ▶ Trigger on equivalent voltage of 59.5 keV γ particle signal (16,500 e^-)
- The output is sent into the oscilloscope in two channels:
 - Inline CR filter for noise reduction
 - No inline filter (can apply software filters in labview)
- Collected 1000 events
- Schematic view of experiment below on left, picture of detector on right

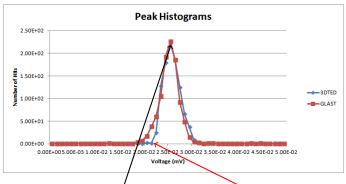

Experimental Setup

- Inline CR filter
- Read Out Electronics
- Power Supplies
- Detector —

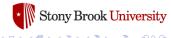


Glast Detector

- Glast mini-square detector
- Well-known characteristics (T. Ohsugi et. al, NIMA Vol 541, Issues 1-2, 2005) so it provides a baseline
- Less than full charge collection at perimeter of active region
- Provided to us by Hartmut Sadrozinski (Thank you!)



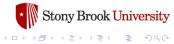
CCE Raw Data



Same mean shows collection is identical. Different vertical scales on left.

3D-TED isolation from charge sharing

- Same charge collection
- Less charge sharing (important for photon sciences)
- More isolation details to be studied with laser injection



CCE results

- ullet The two detectors had similar peaks (peak value \propto Energy deposited)
- The peak mean values are consistent, meaning they are collecting roughly the same amount of charge
- Consistent over different voltages (plots in back-up slides)
- Approximate signal to noise ratios are decent and similar to each other (glast \approx 15, 3D-Trench-Electrode \approx 13.5)
- We see that the 3D-Trench-Electrode detector is more noisy.
 Expected because of its higher leakage current
- We expect CCE to depend on location. Will be studied more closely with laser injection.

Summary

- Simulated 3D-Trench-Electrode Detector has a depletion voltage of 95V, about $\frac{2}{5}$ of the column detectors.
- One can also see that the electric field is more uniformly distributed in the 3D-Trench Electrode Detectors than in the column 3D.
- Preliminary electrical and charge collection efficiency measurements from the first prototypes are done.
- We see full charge collection and much reduced charge sharing with the 3D-Trench-Electrode Detector
- Will do simulations with simulated radiation defects
- Will do higher resolution CCE measurements with laser injection.
- CNM has started the next round of prototypes.

Thank you for your attention!

References

- 1. The ATLAS Collaboration, Atlas Insertable B-Layer Technical Design Report ATLAS TDR 19, 2010
- 2. C. Kenny, S. Parker, J. Segal, C. Storment, Silicon detectors with 3-D electrode arrays: Fabrication and initial test results
- IEEE Transactions on Nuclear Science, NS46(4) 1999.
- 3. T. Ohsugi, S. Yoshida, Y. Fukazawa, K. Yamamura, K. Sato,
- K. Yamamoto, Hartmut F.-W. Sadrozinksi, the GLAST-LAT collaboration, Design and properties of the GLAST flight silicon micro-strip sensors Nuclear Instruments and Methods in Physics Research A, Vol 541, Issue 1-2 2005.

References Cont'd

4. Silvaco International,

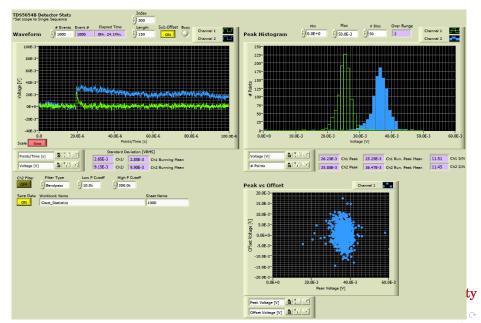
ATLAS User's Manual Volume I, 2000.

5. Z. Li,

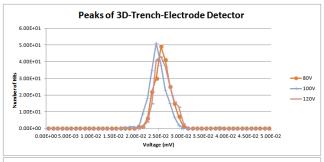
New BNL 3D-Trench electrode Si detectors for radiation hard detectors for sLHC and for X-ray applications.

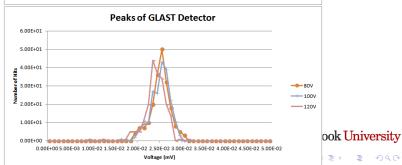
Nuclear Instruments and Methods in Physics Research A, Vol 658, Issue 1 2011.

6. Z. Li,


Radiation damage effects in Si materials and detectors and rad-hard Si detectors for SLHC.

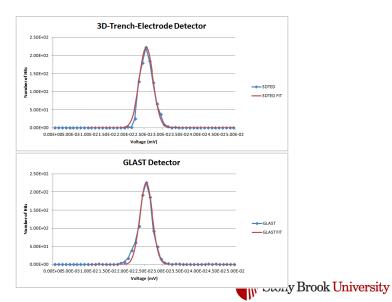
Journal of Instrumentation, 4 P03011 2009.


Electrons Versus Holes

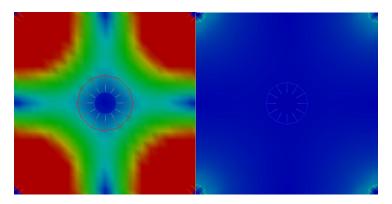

- There is a difference between collecting and reading out electrons versus holes because of their mobility
- But because of the high \vec{E} , we don't see the mobility difference over such a small distance
- This is because we are near the saturation
- There is only a 20% difference in this case, so it is not significant

Glast Detector Results

Peaks at different voltages



∃ ⊳


24 / 24

Rough Fits

Column

Full Depletion Voltage was simulated to at 250 V. $\Phi_{eq}=10^{16}~1$ MeV $\rm n_{eq}/cm^2, electrode$ spacing: $50\mu m$

On the left, the maximum (red) is 40,000 V/cm while on the right the maximum is almost 1,300,000. Stony Brook University