Design and characterization of novel monolithic pixel sensors for the ALICE ITS upgrade

Costanza Cavicchioli

costanza.cavicchioli@cern.ch CERN - for the ALICE Collaboration

ALICE Inner Tracking System

03 Sep 2013 - HSTD9

ITS upgrade

Design objectives

- record Pb-Pb collisions at a rate of 50 kHz and pp collisions at a rate of 200 kHz
- improve impact parameter resolution by a factor 3
- improve standalone tracking efficiency and $\ensuremath{p_{\text{T}}}$ resolution
- fast insertion/removal for yearly maintenance
- installation 2017-2018

New layout

- layers: 7 (3 inner, 4 middle+outer)
- beam pipe outer radius: 19.8 mm
- first layer radius: 22 mm
- |η| < 1.22 over 90% of luminous region

Specifications

	Inner Barrel	Outer Barrel			
Silicon thickness	50 μm				
Material thickness	0.3% X ₀	0.8% X ₀			
Chip Size	15 mm x 30 mm				
Pixel Size	O(30 x 30) μm²	$O(30x30) \div O(50x50) \ \mu m^2$			
Integration Time	< 30 μs				
Power density	< 300 mW / cm ²				
Hit density (Pb-Pb)	~ 115 / cm²	~ 1.5 / cm²			
Radiation Load (TID)	< 700 krad < 10 krad				
1 MeV n _{eq} fluency	1.1 x 10 ¹³ cm ⁻²	3 x 10 ¹⁰ cm ⁻²			
Data throughputs 🧹	1.5 Gbit sec ⁻¹ chip ⁻¹	16 Mbit sec ⁻¹ chip ⁻¹			
• Nr of bits to code a hit : 35					

• Fake hit : 10⁻⁵ /event

Technology

TowerJazz 180 nm CMOS technology, monolithic detectors

- gate oxide thickness < 4 nm ⇒ robust to TID
- up to 6 metal layers good for high density, low power digital circuits (small periphery , small dead material)
- standard epi layer 15-18 μm ⇒ large part of epi depleted @ 1-2 V reverse bias (S/N ratio increases, higher resistance to non-ionizing radiation)
- standard resistivity between 1 and 5 $k\Omega$ cm
- quadruple-well option
 PMOS + NMOS can be used inside pixel
- possible stitching
- 📫 up to a single die per 200 mm diameter wafer

(less insensitive gaps, easier alignment of chips)

State of the art - STAR PXL

ULTIMATE chip

- developed by IPHC Strasbourg
- AMS 0.35 μm OPTO process
- rolling shutter + correlated double sampling (CDS) inside each pixel
- 20.7 x 20.7 μ m² pixel size
- 15 μ m thick epi layer, \geq 400 Ω cm resistivity
- consumption 130 mW/cm²

	STAR PXL	ALICE ITS (inner layers)
Readout time	190 µs	< 30 μs
TID radiation hardness	150 krad (35 °C)	700 krad (28 °C)
NIEL radiation hardness	few 10 ¹² 1 MeV n _{eq} /cm ² (35 °C)	$1.1 \times 10^{13} 1 \text{ MeV} n_{eq} \text{ /cm}^2$

Further developments needed

22.71 mm

Developments

MISTRAL

- by IPHC, Strasbourg
- rolling shutter with comparator at end of column
- amplification + CDS inside each pixel
- 2 columns read at once = 2x readout time
- integration time ~30 μs
- pixel size 22 x 22 μ m² to 22 x 33 μ m²

CHERWELL-2

- by RAL (UK)
- rolling shutter with "strixel" structure
- comparator + processing electronics in the column pixel area
- memories also inside the strixel
- integration time ~30 μs
- pixel size 20 x 20 μm²

ASTRAL

- by IPHC, Strasbourg
- rolling shutter with in-pixel comparator
- short analog lines, smaller power consumption
- reduction of peripheral circuitry
- integration time ~10 μs
- pixel size 22 x 22 μm^2 to 22 x 33 μm^2

ALPIDE

- by CERN, INFN (IT), CCNU (China)
- data-driven readout, address encoder used also for reset
- integration time 4 µs (shaping time of front-end)
- pixel size O(30 x 30 μm²)

pALPIDE (prototype ALice PIxel DEtector)

Collaboration between CERN, INFN (Italy), CCNU (China)

ALPIDE prototype: Explorer

- study the electrode layout
 - pixel pitch
 - spacing between electrode and electronics
 - collection electrode shape / size, Q/C ...
- study the effect of back bias on substrate
- Explorer-0, July 2012 (9 variants, 18 μm epi, high res.)
- Explorer-1, April 2013 (16 layout variants on different materials)

Explorer-0 variants

Sector	Туре	Diameter [µm]	Spacing [µm]	
1	\bigcirc	2	0	smallest diode, lower collection eff.
2	\bigcirc	3	0	intermediate performance, S/N lower
3	\bigcirc	4	0	larger diode, no spacing, more noise
4		3	0	performance similar to sector 2
5	\bigcirc	3	0.6	small spacing, lower efficiency
6	\bigcirc	3	1.04	better S/N increasing spacing
7	\bigcirc	2	1.54	better collection eff., better S/N, TW
8	\bigcirc	3	0	triple well
9	\bigcirc	3	1.04	triple well

03 Sep 2013 - HSTD9

Explorer – block diagram

Explorer-0 charge collection efficiency

- ⁵⁵Fe X-ray source used
- response checked for seed (highest signal in 5x5 matrix) and for cluster (5x5 pixels around seed)
- ⁵⁵Fe calibration peak \rightarrow charge calibration (1640 electrons in single pixel)
- example of seed (left) and cluster (right) signals below

Back bias effect

- seed pixel signal (left) and cluster multiplicity (right) as function of the back bias voltage, for 20 x 20 μm^2 pixels
- increase of back bias voltage → increase of depletion volume → drop of the input pixel capacitance → increase of single pixel signal
- increase of depletion volume → reduction of cluster multiplicity (with less active pixels the chip readout time decreases)

Explorer-0 noise

- uniformity studied in space: sector-to-sector variation observed due to different structures implemented
- below plots for 20 x 20 μ m² pixels (left) and 30 x 30 μ m² pixels (right)
- uniformity studied in time with 100 consecutive pedestal measurements (one measurements corresponds to about 30 seconds)

03 Sep 2013 - HSTD9

Explorer-1

From Explorer-0 to Explorer-1 diode layout and input capacitance optimized (from 5 fF to 2 fF)

16 different Explorer-1 structures submitted, used to scan the parameter space

- Comparison of ⁵⁵Fe cluster signal for Explorer-0 and Explorer-1
- Explorer-1 shows signal increase, and similar noise level

Explorer-1 detection efficiency

- after irradiation drop of 10 20% in CCE, recovered with back bias
- better performance of larger diodes with larger spacing to electronics
- wider distance \rightarrow wider depletion volume \rightarrow lower input capacitance
- better performance of 20 x 20 μ m² at low back bias voltage
- detection efficiency above 99% up to 10σ cut, also after irradiation

Explorer-1 results after tests with 4 GeV/c electrons at DESY, averaged on all diode geometries

pALPIDE (prototype ALice PIxel DEtector)

03 Sep 2013 - HSTD9

Priority encoder

- hierarchical readout
- 4 inputs basic block repeated to create a larger encoder
- 1 pixel read per clock cycle
- forward path (address encoder) in blue
- feed-back path (pixel reset) in red
- asynchronous (combinatorial) logic
- clock only to periphery, synchronous select only to hit pixels

Conclusions

- ALICE ITS upgrade, entirely based on a new monolithic pixel detector, to record Pb-Pb collisions up to 50 kHz with improved vertexing capabilities
 - < 30 µs integration time
 - 0.3% X₀ material budget for innermost layers
 - < 300 mW / cm² power consumption
- Explorer prototype chips fabricated in TowerJazz 180 nm CMOS technology
 - very good charge collection efficiency, noise, S/N measured with radioactive source and test beams
 - Explorer-1 fabricated in 16 variants on different materials, to scan parameter space
- pALPIDE prototype fabricated, characterization started
 - in-pixel discriminator and storage element
 - sparsified readout with priority encoder scheme

Sparsified readout

- Matrix of pixels arranged in columns: 2 adjacent, mirrored, columns share the same digital area
- GOAL: after a trigger, read only the active pixels, and reset them
- Possible readout architecture with priority encoder -> basic cell of 4 pixels, repeated to read larger structures

April 2013 engineering run

Explorer-1, pALPIDE, MISTRAL + ASTRAL families, CHERWELL

Туре	# wafers	epi thickness [µm]	resistivity [Ω cm]	Δρ [Ω cm]
1	3	12	30	-
2	4 🔇	18	> 1k	> -
3	3	30	> 1k	-
4	3	40	> 1k	-
5	6 🤇	20	6.2 k	> 1.2 k
6	3	40	7.5 k	2.3 k
7	3	CZ	> 700	-

• 18 µm epi thickness -> ~1300-1400 electrons

Radiation hardness 1/2

- measurements with 10 keV X-ray machine at CERN
- irradiation up to 10 Mrad (25 krad / minute)
- plot for threshold voltage shifts, 2 x 10⁴ krad -> annealing of 24h

- basic structures, diodes + transistors
- studied threshold voltage, transconductance and dark current wrt radiation and dose

Radiation hardness 2/2

- 32.2 MeV, 24.8 MeV
- 1.1×10^7 to 1.4×10^7 protons / cm²
- static mode (written once and flips counted over time)
- results show average of different patters

- single port RAMs, dual port RAMs, shift register
- studied SEU cross sections
- proton beam from NPI Rez cyclotron (near Prague)

Explorer-0 signal over noise

- studied with 4 GeV/c positrons at DESY (30% more signal than MIPs)
- depends on pixel noise, conversion gain, cluster area
- example of seed pixel S/N for sector 7 below

