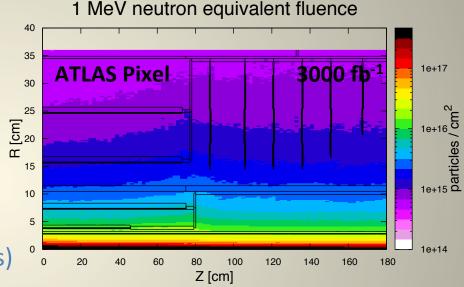
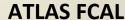


Marko Mikuž

University of Ljubljana & Jožef Stefan Institute

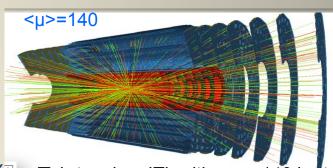

9th STD, Hiroshima September 2nd, 2013





- We just gloriously finished Run I at LHC, a big challenge by itself
 - Designed for 730 fb⁻¹ of 14 TeV pp collisions, ~30 fb-1 in Run I
 - Will probably get ~½ of planned
- **HL-LHC** in advanced planning
 - 3000 fb⁻¹ i.e. ~10xLHC
 - ~10¹⁶ n_{eq}/cm² for pixels (pions)
 - ~10¹⁷ n_{eq} /cm² for FCAL (neutrons)
- Can (tracking) sensors survive in these extreme environments?
 - The same question had been asked for SSC&LHC ~25 y ago
 - The answer was (is) never straightforward

3000 fb⁻¹





Tracking sensors

- Convert charged particle ionization into measurable electrical signal
- Sensor segmentation provides position info
 - 2-D: strips, 3-D: pixels
 - Resolution d/V(12) (binary) or better (analogue charge division)
- Tracking: many layers, keep occupancy < 1 %
- Considerations
 - Signal to (electronics) noise, threshold
 - Radiation hardness
 - Manufacturability
 - Large scale production
 - Engineering (electrical, thermal, mechanical)
 - Material budget
 - Price

- For LHC, initially very little Si was envisaged for tracking
 - 2/3 layers in barrel only for ATLAS LOI
 - Majority MSGC, some GaAs, diamond
 - Radiation hardness, price
- During project execution Si remained the only tracking sensor
 - Except TRT in outer ATLAS tracking
 - Still ~70 m² of Si
 - CMS all-Si with ~200 m² of active sensors
- These trackers perform extremely well at LHC
- Can performance be extended by an order of magnitude in radiation fluence?

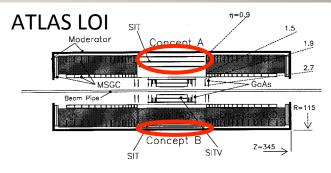
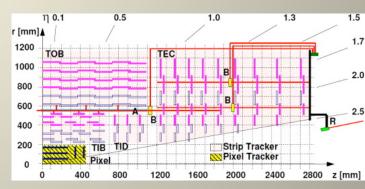
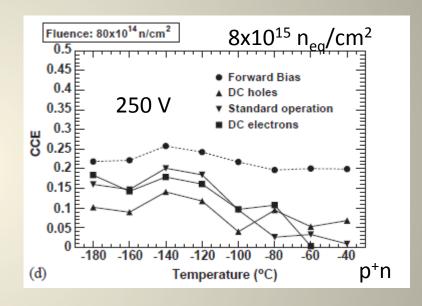
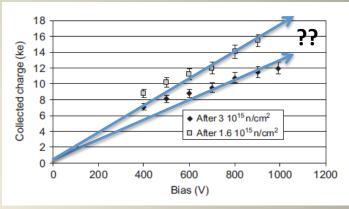



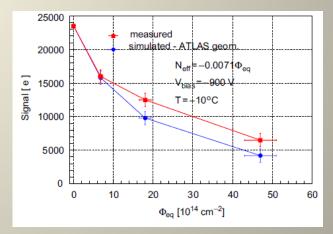

Figure 3.1: Layout of the Inner Detector with two design concepts; concept A above and B below the beam line (dimensions in cm)

CMS Tracker



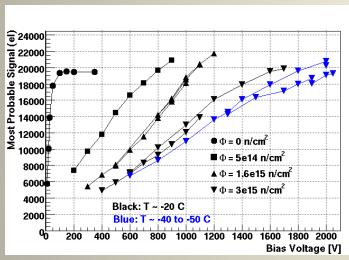
- Extensive R&D for >20 years
 - RD-20, -48, -50
- Three effects of radiation
 - ★ Leakage current
 - ★ Space charge
 - Trapping
- All sorts of tricks applied
 - New materials
 - Low temperature
 - Field manipulation
 - Forward bias
 - **–** ...

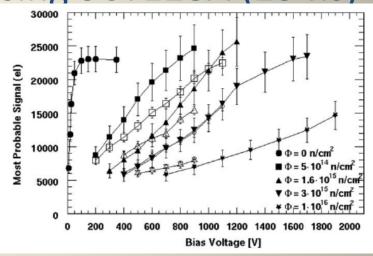

- I. Mandić et al. NIM A533 (2004) 442
- 2 10 years ago trapping (and space charge) appeared detrimental for operation beyond ~10¹⁵ n_{eq}/cm²



- Collection of electrons on n⁺ read-out strips proved essential for detector operation beyond 10¹⁵ n_{eq}/cm²
 - Junction grows from n⁺ side
 - Electrons move faster
 - Electrons trap less
- © CCE of $\geq 50 \%$ @ $3x10^{15} n_{eq}/cm^2$
- CCE quasi-linear with V, no saturation ?!
- Severely inconsistent with simulations based on measured trapping and acceptor introduction at low fluences
 - Trapping, space charge not linear with fluence?

G. Casse et al. NIM A581(2007)318


G. Kramberger et al. NIM A579(2007)762

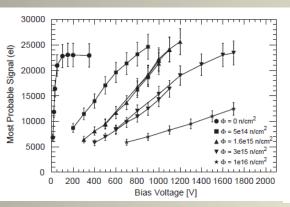


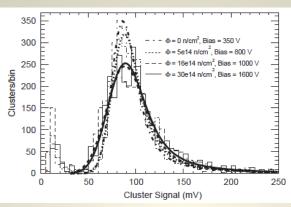
Anno Mirabilis 2008

In 2008 evidence for even higher CCE ≥100 %
 obtained with n⁺p strips using SCT128A (25 ns)

Measurement of charge collection in p-type microstrip sensors with SCT128 chip

I. Mandić et al., 12th RD50 Workshop, June 2008


Observation of full charge collection efficiency in heavily irradiated n⁺p strip detectors irradiated up to 3×10¹⁵ n_{eg}/cm²


I. Mandić, et al., RESMDD08, October 2008 NIMA(2009), doi:10.1016/j.nima.2009.08.004

What's going on?

Measurement of anomalously high charge collection efficiency in n⁺p strip detectors irradiated by up to $10^{16} \, n_{eq}/cm^2$

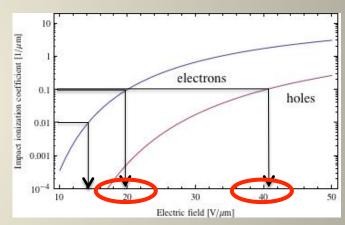
I.Mandić et al. NIM A603(2009)263

CCE results clearly incompatible with simulation based on N_{eff} and trapping data from lower fluences!

Summary of simulation results and comparison with measurements.

Φ_{eq} (n/cm ²)	τ_e (ns)	τ_h (ns)	Simulated charge	e (ke)	Measured charge (ke)	Bias (V)	$V_{FD}(V)$
5 × 10 ¹⁴ 1.6 × 10 ¹⁵ 3 × 10 ¹⁵ 1 × 10 ¹⁶ Thin detector	4.17 1.30 0.69 0.21	3.77 1.18 0.63 0.19	17.8 11.1 7.2 2.5	??	$V > V_{FD}$ and $V > $	1200	600 1900 3500 11600
1.6 × 10 ¹⁵	1.30	1.18	7.4		10.9 ± 1.1	700	450

The bias is the voltage at which measured values were taken. V_{FD} is the calculated full-depletion voltage for the pad detector geometry and the space charge concentration calculated from $N_{eff} = g_c \times \Phi_{eq}$, where $g_c = 0.017 \text{ cm}^{-1}$.



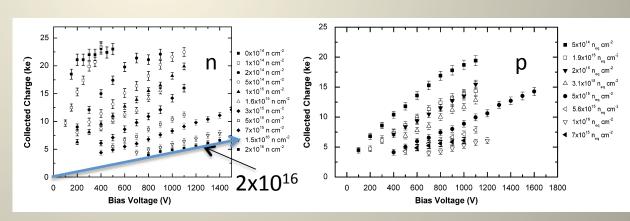
- Multiplication is textbook physics
 - e.g. S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1981
 - Ch 1.6.4 High-Field Property
 - Velocity saturation, impact ionization
 - Ch 2.5.3 Avalanche Multiplication
 - Junction break-down
- Measured impact ionization
 - Electrons create 1 pair in 10 μm at E^2 0 V/μm (100 μm at 14 V/μm), holes need E^4 0 V/μm
 - Holes need ~1 mm for pair creation at E~20 V/ μ m
 - Neglect hole multiplication in signal creation altogether
 - Need to invoke hole multiplication for junction breakdown
- $\alpha_e >> \alpha_h$ Nature gentle to us (in silicon)
 - Large range in E where electrons multiply without inducing breakdown
 - But beware of (too) high electric fields!

$$\alpha_{e,h}(E) = \alpha_{e,h}^{\infty} e^{-b_{e,h}/E}$$

A. G. Chynoweth, Phys. Rev. 109, 1537(1958).

R.VAN OVERSTRAETEN and H.DE MAN, Solid-State Electronics 13(1970),583-608. W.MAES, K.DE MEYER, R.VAN OVERSTRAETEN, Solid-State Electronics 33(1990),705-718.

$$\int_{0}^{w} dx \, \alpha_{e}(x) e^{-\int_{0}^{x} (\alpha_{e}(x') - \alpha_{h}(x')) \, dx'} = 1$$

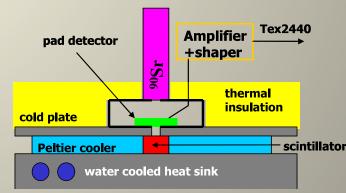

Breakdown condition, can swap α_e with α_h

Multiplication observed

- $E = 20(14) \text{ V/}\mu\text{m}$ needs field peaking
 - − Homogeneous *E*: $V \approx 6000(4000)$ V for d=300 μm
 - Space charge, electrode shape sharpen up E
 - To get multiplication: $V \gg E/\alpha_e = 200(1400) \text{ V}$
 - Clear advantage of high E in limited region (APD's !)
- Observed in
 - Strip sensors
- Later in
 - Pad detectors
 - -3-D
 - Pixels


G. Casse et al. NIM A 636(2011)56

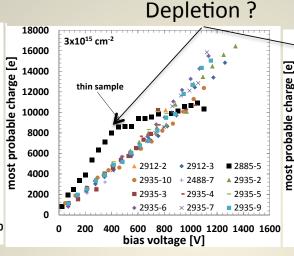
How far can we go?

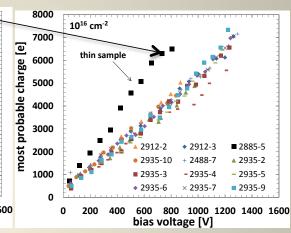

- Special run of "spaghetti" diodes to address this
 - All strips connected to one readout
 - Strip electric field, equal weighting field (~pad)
 - Different implants (double diffusion, energy)
- Irradiated with reactor neutrons in steps
 - -3, $10x10^{15}$ -> 5 samples annealed
 - -2, 4, 8x10¹⁶, 1.6x10¹⁷ n_{eq} /cm² -6 standard samples
- I(V), CCE(V) and noise on 90Sr set-up at -25°C
 - Trigger purity allows measurements at low S/N

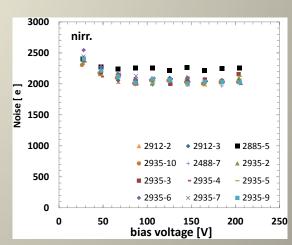
ganged strips

Published in: G. Kramberger et al., JINST 8 P08004 (2013).

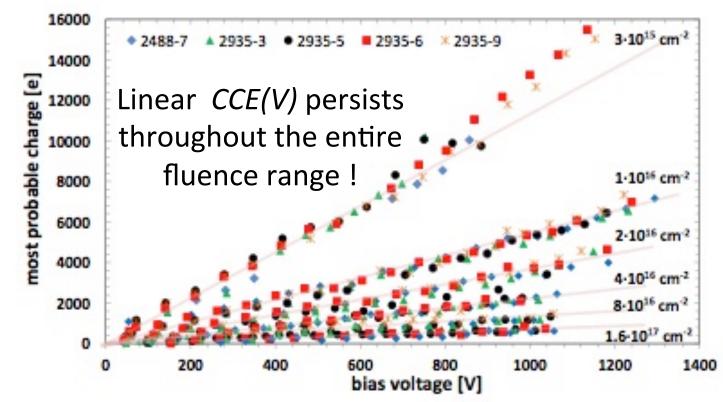

wafers	2488-7	2885-5	2935-10	2912-2, 3	2551-4
	2935-2,3,4,5,7,9				
type	spaghetti	spaghetti,thin	spaghetti	spaghetti	pad detector
process	standard	standard,	double energy	double diffusion	standard
thickness	300 μm	150 μm	300 μm	300 μm	300 μm
V_{fd}	≈ 90 V	≈ 30 V	≈ 90 V	≈ 90 V	≈ 50 V







- No influence of different processing
 - At least no systematic one...
- Hint of "depletion" for the thin detector
- 25 ns shaper not optimized for noise
 - Noise ~2000 e before irradiation

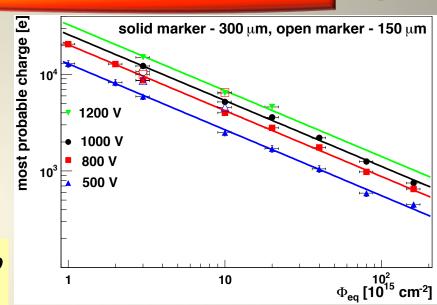

- Up to $1.6 \times 10^{17} \, n_{eq}/cm^2$
 - Steps 1, 2, 4, 8x10¹⁶

Annealing 80 mins @ 60°C

between

... and

Silicon is still alive!

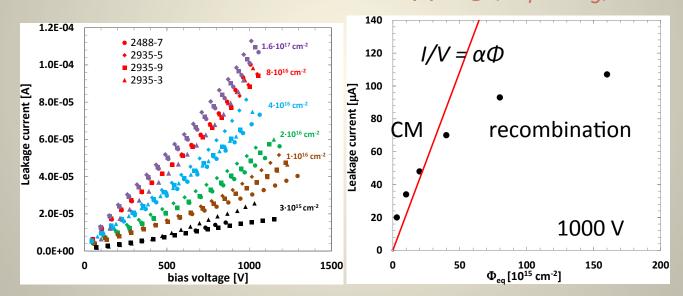


- Linear relationship CCE(V)
 - Same slope in log(CCE) vs. $log(\Phi)$ for any V
 - Magic formula

$$Q_{MPV}(V,\Phi) = k \cdot V \cdot (\Phi/10^{15} \, \text{n}_{eq}/\text{cm}^2)^b$$

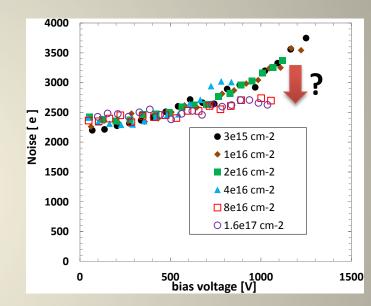
$$k = 26.4 e_0/V$$

 $b = -0.683$


- "Magic" no underlying physics... in fact lots of it
 - Mix of depletion, trapping and charge multiplication

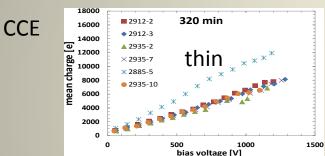
- Well, the signal is there... but what about current & noise?
 - If signal gets multiplied (M_s) so does the current
 - In fact even more due to de-trapping $(M_1 > M_5)$

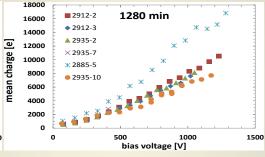
...true, until above 2x10¹⁶ recombination kicks in !

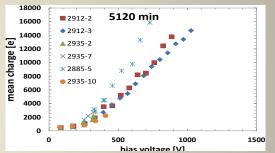

Current starts to saturate

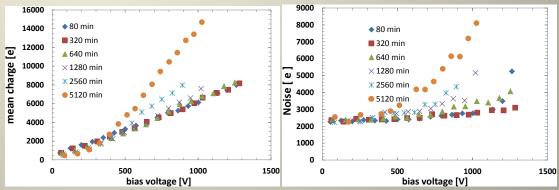
- Noise results in interplay of sensor and electronics
 - Sensors contribute through C_{det} to voltage and I_{leak} to current (Shot) noise, added in quadrature
 - In fast electronics voltage noise tends to dominate
- When CM present, noise enhanced by excess noise factor F; F(M=1) = 1, *F*(*M*>>1)≈2
 - R. J. McINTYRE, IEEE TED13(1966)164 $ENC_{MI} = \sqrt{2e_0I_{gen}\tau \cdot \sqrt{F \cdot M_I}}$ for details

$$ENC_{MI} = \sqrt{2e_0I_{gen}\tau} \cdot \sqrt{F} \cdot M$$

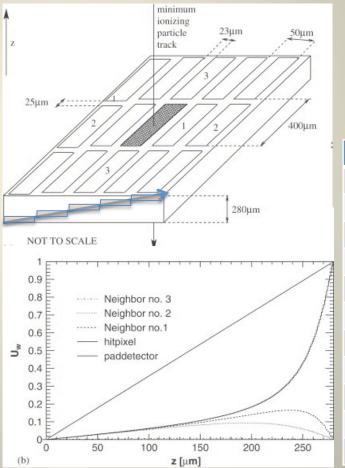

- Impossible to tell apart contributions of CM and recombination
 - CM decrease at highest fluences ?




Annealing


- 6 samples with different processing after 10¹⁶ n_{eq}/cm²
 - Steps: 80, 320, 640, 1280, 2560, 5120 min @ 60°C

- All samples exhibit similar annealing
 - As already observed, reverse annealing enhances CM
- Gain offset by increased noise
- Could still be beneficial for small structures e.g pixels

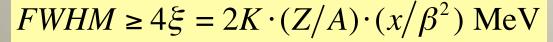


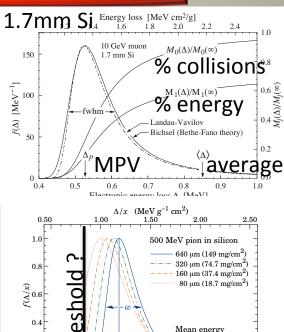
Weighting field

- Weighting field sharply peaked at strips, pixels (3-D!)
- Will affect signal when $v.\tau_{eff} << d$
 - $-v_{sat}\tau_{e}$ ≈ 30 μm @ 10¹⁶
- > Thin detectors
- Inclined tracks
 - Skewed distributions
 - Algorithms ?
 - ✓ Thin = binary!
- Non-homogeneous detectors?

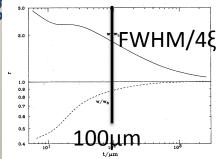
G. Kramberger, D. Contarato, NIM A560(2006)98.

Top 25% yield 80% of signal, top 10% give 50%


top 1070 8.10 3070								
U _w		X		Δх				
0.0		0						
0.1		145		145				
0.2		208		63				
0.3		234		26				
0.4		247		14				
0.5		256		9				
0.6		263		7				
0.7		268		5				
0.8		272		4				
0.9		276		4				
1.0	<u> </u>	280	\/	4				



Thin detectors



- Seen to provide more signal after heavy irradiation at "low" V
 - Less charge sharing for inclined tracks
- But beware:
 - Less ionization signal, more fluctuations
 - Bichsel, Rev. Mod. Phys. 60(1988)663; PDG
 - Additional fluctuations from trapping, CM
 - Rely on Central Limit Theorem ?
 - Best measure MPV-> S/N-> spectrum on actual device in test beam
- Efficiency vs. noise occupancy as function of threshold - ultimate info for (binary) tracking

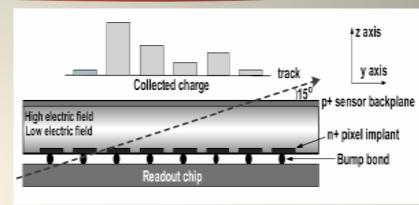
 Δ/x (eV/um)

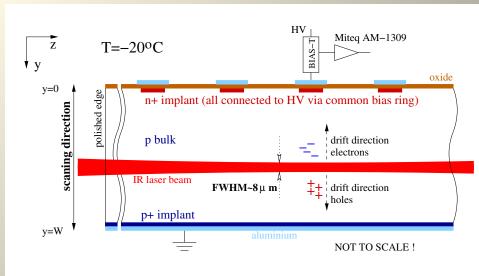
- Extensive efforts have been going on to model irradiated silicon from "first principles"
 - Trap parameters -> models (semi-analytic, TCAD)
- The problem, nicely formulated by Michael Moll

"There is no shortage of traps in irradiated silicon..."

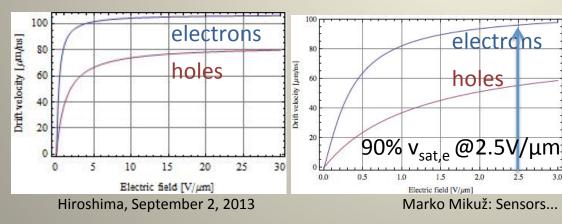
- Signal governed by Ramo theorem
 - E_w depends on geometry, can be calculated
 - E problematic for modeling
- Can we measure it?

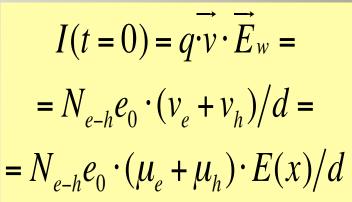
$$I(t) = q \cdot \vec{v} \cdot \vec{E}_w =$$


$$= q \cdot \mu(E) \cdot \vec{E} \cdot \vec{E}_w$$

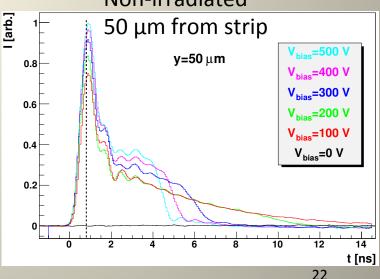


- Inspired by beam grazing technique introduced by R. Horisberger to study CCE in pixel detectors
- Edge-TCT
 - Replace small angle beam by edge-on IR laser perpendicular to strips, detector edge polished
 - Focus laser under the strip to be measured, move detector to scan,
 - Measure induced signal with fast amplifier with sub-ns rise-time (TCT)
 - 8 μm FWHM under the chosen strip, fast (40 ps) and powerful laser
 - Caveat injecting charge under all strips effectively results in constant weighting (albeit not electric!) field



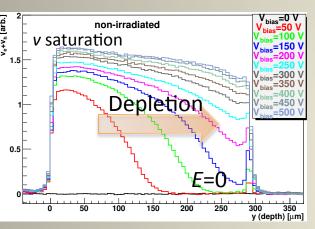


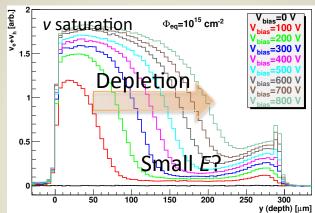
Electric field measurement

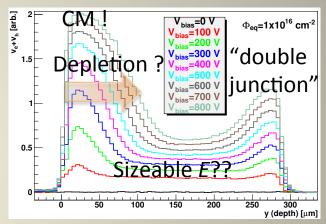


- Initial signal proportional to velocity sum at given detector depth
- Caveats for field extraction
 - Transfer function of electronics smears out signal, snapshot taken at ~600 ps
 - Problematic with heavy trapping
 - Electrons with v_{sat} hit electrode in 500 ps
 - Mobility depends on E
 - v saturates for E >> 1V/μm

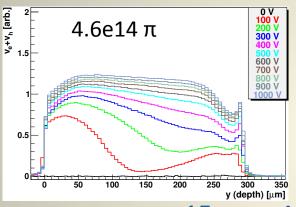
Non-irradiated

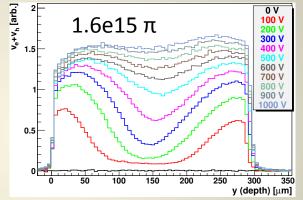




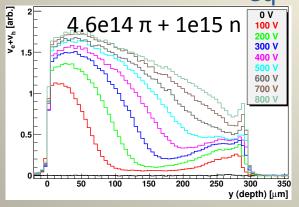

Selected results

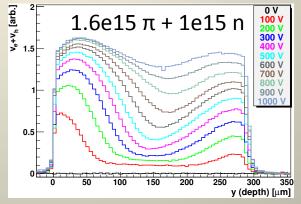
Hamamatsu n⁺ strip (mini-)sensors, FZ p-type, irradiated with neutrons


- Instructive qualitatively, but (not yet ?) quantitative in terms of E
 - Non-irradiated "by the book" for abrupt junction n⁺p diode
 - SCR and ENB nicely separated, small double junction near backplane
 - Medium fluence (Φ =10¹⁵ neutrons): some surprise
 - Smaller space charge than expected in SCR, some field in ENB
 - Large fluence (Φ =10¹⁶): full of surprises
 - Still lower space charge, sizeable field in "ENB"
 - CM additional trouble for interpretation at large V



Mixed irradiations


• First PSI pions, $\Phi=4.6x10^{14}$, $1.6x10^{15}$ n_{eq}/cm^2



Oxygen helps for charged hadrons...

Topped by 10¹⁵ n_{eq}/cm² neutrons

...but neutrons introduce acceptors providing negative space charge

Conclusions

- In recent years we learned how to exploit charge multiplication to enhance signal in silicon detectors
- This offers the possibility to operate silicon sensors at fluences not imaginable a decade ago
- Success of operation depends critically on details in sensor design, electronics and environment
- New techniques enable better understanding of sensor operation and further optimization