

The LHCb Velo Upgrade 9th International "Hiroshima" Symposium

Tim Head on behalf of LHCb

CERN

5 September 2013

The LHCb Detector

- ullet LHCb is a single-arm (2 < η < 5) spectrometer at the LHC
 - Precision beauty and charm physics: CP violation, rare decays, heavy flavour production
- ullet Time-dependent analyses require good time resolution: \sim 40 fs
- Efficient trigger requires precise Impact parameter measurement
- Current detector performance shown earlier this week by Hella [link]

The LHCb Detector

- Vertex Locator surrounds the interaction point
- Made of two halves which can open and close

The Current VELO

- 88 silicon strip sensors in R- ϕ design
- Active edge at 8.2 mm
- ullet Evaporative CO₂ cooling, each module produces $\sim 16\,\mathrm{W}$ of heat
- In vacuum, separated from LHC by 300 μm thick foil

Why Upgrade?

- LHC already provides higher instantaneous luminosities
 - would currently not translate into higher (hadronic) yields
- Current detector is limited due to 1 MHz readout rate of hardware trigger

For the upgrade in 2018:

- Read out every detector component at 40 MHz!
- Improve on the excellent performance of the current Velo

Upgraded VELO

- Keep infrastructure: cooling, vacuum tank, power supply
- Upgrade detector modules, readout, lower material RF shield

Upgraded VELO Module

- Active edge at 5.1 mm
- Cooling retracted from sensor tip to minimise material
- One module is made of 4 sensor tiles
- Two modules make one station
- 26 stations with a total of 40 894 464 pixels

Upgraded Sensors and Chips

- ullet Each sensor tile (\sim 15x45 mm) bump bonded to 3 chips
- Silicon sensors with 55x55 μm pixels, 200 μm thick
- VeloPix chip based on TimePix3
 - TimePix team highly experienced
 - VeloPix data rate much larger than for TimePix
- Time stamping, Time over threshold or binary readout possible
- Peaking time <25ns, timewalk <25ns

Micro Channel Cooling

- Want a low mass cooling solution
- All material is silicon, no mechanical stress due to CTE mismatch
- Customise routing of channels to go exactly where heat is produced
- Large cooling liquid surface area by using many narrow channels

Micro Channel Cooling

- Want a low mass cooling solution
- ullet Each module produces \sim 40 W
- ullet Successfully pressure tested to $> 10 \times$ operating pressure
 - ▶ nominal pressure 15bar at −30C, 60bar at room temperature
 - tested to over 700 bar!
- Large scale endurance testing campaign underway

Upgraded RF Shield

- Requirements: vacuum tight, low mass yet mechanically stable, radiation hard, thermally stable
- Mill a 300 μm thick foil from a solid block of Aluminium
- RF shield aperture: 3.5 mm, sensor inner edge: 5.1 mm

Upgraded RF Shield

- Requirements: vacuum tight, low mass yet mechanically stable, radiation hard, thermally stable
- Mill a 300 μm thick foil from a solid block of Aluminium
- RF shield aperture: 3.5 mm, sensor inner edge: 5.1 mm

Radiation Damage

- \bullet Sensor has to withstand 8 \times $10^{15} \frac{n_{eq}}{cm^2} (\sim$ 400 MRad after 10yrs) at edge closest to beam
 - ightharpoonup ... and only \sim 1/40 of that at point furthest from beam
- Irradiated areas require higher bias voltage
- Need to apply 1000 V to fully deplete
- Solution might be asymmetric guard rings

Data Rates @ 40 MHZ

- Whole detector produces data at a rate of 2.5Tbit/sec
- Rate varies greatly across different regions
- ASIC readout is data driven, results in out of order arrival of data
 - on chips zero suppression
- Innermost region, hottest ASIC:
 - ▶ $8.5 \, \text{tracks} \times 40 \, \text{MHz} \approx 320 \, \text{Mtracks/sec/chip}$
 - equates to a data rate of 20Gbit/sec/chip

Conclusion

- The current Velo detector is performing extremely well
- The upgraded Velo detector will be a silicon pixel detector
- Pioneering extremely light weight micro channel cooling
- Improved IP resolution compared to current detector
- Will allow us to record more data
- On course for installation for 2018 upgrade

