

Radiation Hard Sensor Materials for the CMS Tracker Upgrade The CMS HPK Campaign

Martin Printz on behalf of the CMS Tracker Collaboration

Institut für Experimentelle Kernphysik, KIT Germany

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

Goals of the HPK Campaign

- Identify the material baseline for the Tracker Upgrade Phase II
 - float-zone (FZ) material: 320μm and 200μm
 - magnetic Czochralski (MCz): 200µm
 - p-in-n (N) vs. n-in-p (P,Y) technology
- Identify the main layout parameter:
 - Strip pitch
 - width/pitch-ratio
 - Isolation techniques of P-type sensors
 - p-spray (Y)
 - p-stop (P)
- Identify possible new sensor design with intergrated PA or higher granularity
- Labeling example for strip sensor: float-zone, 320µm, p-stop = FZ320P

HPK Campaign terms:

- Conditions:
 - Ordered 144 wafers of 6-inch size
 - Comparability given -> produced by one vendor: Hamamatsu Photonics K.K.
 - Measurements done at several Institutes across Europe (17 participating Institutes)
 - Cross-calibration of measurements
- Investigation of:
 - General dependence on fluences and particle type:

Overview of fluences (in10 ¹⁴ N _{eq} cm ⁻²) for different radial positions						
Radius/cm	Protons	Neutrons	total			
40	3	4	7			
20	10	5	15			

- Volume currents
- Strip parameters
- Charge collection
- Annealing behaviour of parameters
- T-CAD Simulation studies of sensor material and strip parmeters

The CMS HPK Campaign 9th International Hiroshima Symposium, Japan 1-5 September 2013

Martin Printz

Institut für experimentelle Kernphysik (IEKP), KIT

Total leakage current

- Alpha parameter: current related damage rate
- Independent of material, irradiation fluence and particle
- No correlation observed with sensor type and material
- Measured current for strip sensors higher compared to expectation

Strip parameters I

- Interstrip capacitance C_{int}
- Polyresistance R_{poly}
 - No significant change with irradiation

Fluence (n_{eq}/cm^2)

5.0x10¹⁴

1.0x10¹⁵

The CMS HPK Campaign 9th International Hiroshima Symposium, Japan 1-5 September 2013

0.0

M200N

M200P

M200Y

Irradiations:

protons

neutrons

mixed

1.5x10¹⁵

4

V

Coupling Capacitance (pF cm⁻¹ µm⁻¹)

1.65

1.60

1.55 -

1.50

1.45

0.0

September 2nd, 2013

Strip parameters II

- Interstrip Resistance R_{int}
 - R_{int} drops with fluence from several GOhmcm to some 100MOhmcm
 - Nevertheless R_{int} still much higher compared to R_{poly}(~2MOhm) -> strip isolation is sufficient
 - No dependence on annealing, P and N, p-stop and p-spray

The CMS HPK Campaign 9th International Hiroshima Symposium, Japan 1-5 September 2013

Martin Printz Institut für experimentelle Kernphysik (IEKP), KIT

Signal FTH200

- F ≤ 7e14n_{eq}/cm² (R~60cm): N-type at 600V shows higher seed signal than P-type, due to cluster size
- After $F \ge 7e14n_{eq}/cm^2$ (R~40cm): N-type has smaller signal if not noisy
- After F ~ 1.5e15n_{eq}/cm² (R~20cm): N-type small signal/ high noise
- P-type signal ~ 8 ke⁻ at 600V / ~10 ke⁻ at 900V
 - proposed binary chip threshold: 6 ke⁻

7

- F < 7e14n_{eq}/cm²: P-type signal lower than N-type
- $F \ge 7e14n_{eq}/cm^2$: N-type generates much smaller signal
- F ~ 1.5e15n_{eq}/cm²: N-type below 6 ke⁻, or noisy
- P-type ~8 ke⁻ at 600V/ 11 ke⁻ at 900V; comparable to FTH200P

Signal MCz200

- $F \ge 7e14n_{eq}/cm^2$: N-type generates smaller signal at 600V for n irradiation
- N-type shows RGHs for p irradiation
- $F \sim 1.5e15n_{eq}/cm^2$: N-type noisy; P-type > 8 ke- for 600V and 900V

- F = $7e14n_{eq}/cm^2$: 200µm sensors well in a band above ~10 to 12 ke⁻
- signal constant for all annealing times

- $F = 1.5e15n_{eq}/cm^2$: P-type well above 7.5 ke⁻ until ~20w@RT
- N-type drops sharply with annealing time
- Most of the time N-type sensors show huge number of RGH (red points >1%)

Annealing of signal for 320µm and 200µm

- signal of 320µm higher compared to 200µm for most of annealing time
- N-type drops strongly after ~40 days of annealing @RT; P-type little less
- 320µm annealing not constant over time -> more control during operation necessary

Signal – T-CAD Simulation studies

- Simulation studies of charge collection efficiency CCE:
 - radiation damage models developed for neutrons and protons
 - Reproduction of measurements succesful
 - Predictions for new sensors and runs possible

MSSD – multi-geometry sensor

- 12 regions, each 32 strips with different pitches and w/p-ratios
- P= 70μm, 80μm, 120μm, 240μm
- w/p= ~0.15, ~0.25, ~0.33
- FZ, FTH, MCz; N- and P-type
- MSSD samples irradiated:
 - 20cm: p and n
 - 40cm: p or n

MSSD – BeamTest results

- cluster signal ~10 ke⁻ in accordance to seed signal of ~8 ke⁻
- noise of N-type much higher compared to P-type

Noise contribution

- Symmetric and asymmetric noise seen dependend on material
 - Pedestal runs in AliBaVa station with BeetleChip
- Non-gaussian noise/ Random Ghost Hits RGH mainly on n-type sensors irradiated with charged hadrons

Random Ghost Hits

- Non-gaussian noise seen for N-type FZ and MCz material after short annealing
 - large RGH phase space for N-type
 - P-type almost not affected
- MSSD:
 - Increase of RGH occupancy with bias voltage for all regions in N-type
 - Regions with larger pitch affected first
 - Regions with small strip width affected first
 - P-type almost no RGH

MSSD

MCz200N

FTH200N

The CMS HPK Campaign 9th International Hiroshima Symposium, Japan 1-5 September 2013

200

100

1000

Annealing (h@RT)

Martin Printz Institut für experimentelle Kernphysik (IEKP), KIT

ontom

17

Neutrons only

- Effect is much reduced for neutron only irradiation
- Dependence on ionizing radiation hints towards a combined effect of bulk damage and surface charge Q_f

Simulation of electric fields in N- and P-type

- Peak electric field is higher for N-type compared to P-type sensor
- P-type: peak E-field decreases with increasing surface damage Q_f
- N-type: peak E-field increaes with Q_f
 - Micro-discharge possibility higher for N-type sensors

Sum up

- Strip parameters slightly affected by radiation for N- and P-type but R_{int} which is still high enough to ensure strip isolation
- N-type material shows higher seed signal than P-type when:
 - irradiated with pure protons up to ~3e14n_{eq}/cm² for 320µm thickness
 - up to 7e14n_{eq}/cm² for 200µm
- Above 7e14n_{eq}/cm² signals in N-type material are smaller than in P-type, since the required higher operation voltage generates RGHs
- Long annealing leads to strong decrease of CCE in thick N-type sensors
- Signal of thin sensors constant over annealing time; ensures correct operation
- All N-type sensors show non-gaussian noise after hadron irradiation, P-type sensors don't
- T-CAD Simulation studies:
 - Very good agreement with measurements even for the irradiated sensors
 - N-type show higher electric field strenghts compared to P-type

Thank you and especially to the sensor group and the people who provided results and the plots!

Karlsruher Institut für Technologie

p-type also shows steeper current increase at HV in some cases

The CMS HPK Campaign 9th International Hiroshima Symposium, Japan 1-5 September 2013 Martin Printz Institut für experimentelle Kernphysik (IEKP), KIT

Steep current increase at HV not necessarily linked to RHGs, but seem to increase when RGH rate increases as well

Temperature Dependence of RGHs

- Fake hit rate increases with temperature following current!
- The increase of fake hit rate is typically linked to an increase in current. But an increase in current does not necessarily lead to fake hits.

Symmetric Noise of MSSD sensors

Five trap model

- Two shallow acceptors and one shallow donor in addition to two deep levels
- Able to remove accumulation e-
- Produce very high E field near n+
- Reproduce experimental observed good Rint and Cint

Trap	Energy Level	Intro.	$\sigma_e (cm^{-2})$	$\sigma_{\rm h}({\rm cm}^{-2})$
Acceptor	0.525eV	3.0	1x10 ⁻¹⁴	1.4x10 ⁻¹⁴
Acceptor	0.45eV	40	8x10 ⁻¹⁵	2x10 ⁻¹⁴
Acceptor	0.40eV	40	8x10 ⁻¹⁵	2x10 ⁻¹⁴
Donor	0.50eV	0.6	4x10 ⁻¹⁴	4x10 ⁻¹⁴
Donor	0.45eV	20	4x10 ⁻¹⁴	4x10 ⁻¹⁴

- With one deep acceptor, it is not possible to create enough E field (similar to measurement) near n+ strip along with correct current.
- We can not use deep acceptors with higher introduction rates as it will change space charge significantly leading to very high avalanche multiplication & simulated current become very high compare to measured one.
- Moreover, in reality also, shallow levels are created in much more amount compare to deep trap levels