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 A silicon antihydrogen detector for the AEgIS experiment
– The AEgIS experiment

– Working principle of AEgIS

– Aim and requirements for the silicon sensor

 Test beams:
– Previous results: the MIMOTERA detector

– Miniature strip sensors, Alibava readout

– CNM 3D detector with FE-I4 readout

 Results

 Conclusions and further developments

Outline
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3+AEgIS – Section view of the main apparatus.

 Aim of AEgIS is the determination of the gravitational 
acceleration of antihydrogen in Earth's gravitational field. 
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4+Producing and detecting the antihydrogen
4

 Thermal motion of antihydrogen (though cold, to 4K and eventually to 
100 mK) also has a random transversal component.

 Path selection is made by means of a Moire deflectometer, a TOF 
measurement is required to know the longitudinal component.
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How we measure gbar?

9/3/13

6

 Shift of the fringes wrt 
horizontal path 
proportional to gbar on 
antihydrogen

 High resolution 
required (better than 5 
um for measuring a 20 
um deflection of the 
pattern) to achieve 1% 
precision on gbar at 
expected statistics

 Main source of error 
from multiple 
scattering of 
annihilation products.
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 Observation of direct annihilation on a silicon strip 
detector

 Online beam quality check

 High efficiency (90%) in the detection of antihydrogen

 Measurement of the annihilation position of the 
antihydrogen with a single hit resolution better than 25 
um, providing a seach seed for the downstream 
emulsion detector.

 Precision measurement of the TOF of single antiprotons

Aims of the AEgIS silicon detector
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Annihilations in silicon

 Annihilation of antiprotons with a 
nucleon produces mainly pi-mesons

 If the annihilation happens within a 
nucleus of a heavier element, pions 
may interact and cause nuclear 
fragmentation

 Detection of annihilation is made 
through the detection of charged 
annihilation products (pi-mesons, 
protons, heavy nuclear fragments)

 Total kinetic energy of products 
emitted in annihilations up to ~1,880 
MeV
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Test beam

● Spill composed by 10^7 antiprotons

● Spill spacing ~ 100 keV

● Antiproton energy spectrum slowed 
down to ~ 100 keV by means of 
Aluminum degraders

● Annihilations expected within ~ 15 um 
from detector surface

● Detector mounted in vacuum chamber, 
vacuum level 10^-7 mbar

● Tests took place during 5 days in 
december 2012

Aim:
Understand the signature of 
annihilation events in silicon in 
different kinds of silicon sensors.
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Previous results

Cluster energy spectrum with Geant4
comparison.

● Previous test-beam (May, 2012) using the Mimotera 
(Monolithic diffusion pixel) – First ever (successful) attempt to 
measure antiproton annihilation directly on silicon!

● 14 um thickness, pixel size 153x153 um

● 2.5 MHz total analog readout without zero suppression (offline 
cut of noise events)

Sample frame of an annihilation event 
after noise and background 

suppression.
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 Two silicon strip sensors:
– Sensor 1: 300 um thickness, 80 um pitch, 128 strips, 

1 cm strip length.
– Sensor 2: 300 um thickness, 50 um pitch, 128 

consecutive strips connected, 1 cm strip length

 Sensors, realized on MCz silicon, were provided 
courtesy of HIP. 

 Sensors’ depletion voltage ~ 120 V.

Tested sensors

 CNM 3D sensor, developed for the IBL: 

 230 μm thickness, electrode diameter of 10 μm

 Bias voltage down to -30 V

 Pixel dimensions: 50 μm x 250 μm, 80(col) x 336 
(rows) = 26880 cells.

  2cm x 2cm

 2um passive material on surface (stopping 
slower particles)
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Detector mounting and 
measurements
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3D detector: readout system

 Multipurpose I/O board with USB interface

 Adapter card

 Single chip card (sensor front end) with FE-I4 readout: (50x250 um cells)

 Zero-suppressed redout 
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3D: annihilation event

 Saturation of a few pixel (high energetic fragment at annihilation point)

 Long tracks recorded with different energy deposits (pions – blue tracks, 
protons, green to turquoise tracks) 
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3D cluster analysis

 Wide spread of cluster size (long in-plane pion tracks)

 Cluster energy in excess of 10 MeV.
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 The tests were performed using 
the Alibava test system, provided 
courtesy of RD50 collaboration.

 USB readout making use of two 
Beetle chips (LHCb Velo) with 25 
ns shaping, 128 channels each

 Triggering was done on AegIS 
silicon beam condition monitor 
scanning manually through 
different latencies

 Given Alibava DAQ incompatibility 
with slow triggers, a 30 Hz trigger 
was continuously running 
(pedestals), 'OR'ed with the 
trigger from the Antiproton 
Decelerator.

Strip detector: readout system
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Sample frames at different Vbias

0.6 V 2.2 V

5 V 150 V
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Strip: cluster analysis

Decrease in the active volume corresponds to 
a lower sensitivity to long-travelling 
(low-ionizing particles): Improved position 
resolution.

Decreased sensitivity to long-travelling 
products (low ionizing) affects the distribution 
at lower voltages.

 Selection on the frames with lower occupancy (<40%)

 Clusters defined at > 5 noise RMS conglomerates of strips (no 
seeding algorithm possible here)
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Strips: considerations on the active 
volume / thickness of the detector

● Events at low applied bias voltage (20 to 50 um 
depletion) are very localized (max 2 strips in 70% 
of the events)

● Low voltage brings to consistent undershoots in the 
strip neighboring the event: increase in the 
interstrip capacitance

● Higher voltages (full detector depletion) result in 
extension of the active volume: annihilation 
products with long range can extend considerably 
the cluster (even to millimeters), negatively 
affecting the detector resolution. 
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Conclusions and developments 
 Cluster composition (heterogeneity) doesn't allow the reconstruction 

of the annihilation position by standard centre of mass methods in 
the strip detector.

 Primary source of resolution is the position of short-travelling 
products (heavy fragments) which can be identified by large and 
localized energy release 

 Resolution down to foreseen strip pitch width for the final detector

 Resolution on the fringes should be achieved in the final detector to 
25 um / sqrt(12)~ 8 um.

 The requirement of having a thin detector (avoid multiple scattering 
of products) is compatible with having the highest possible resolution 
achievable with the sensor technology.
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Backups

Alibava calibration curve up to 300 ke:

ADC=a⋅[1−exp (−b⋅charge )] A=5.89e2, B=1.77e-6
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