

Development of Silicon-On-Insulator Monolithic Pixel Detectors -FZ SOI sensor-

MITSUI Shingo (KEK) smitsui@post.kek.jp http://rd.kek.jp/project/soi/

Outline

- SOI pixel detectors
- Integration type pixel detector (INTPIX)
- Cz INTPIX sensors performance
- FZ INTPIX sensors performance
- summary

14.0

-10

10

Features of the SOI pixel detectors

- Bonded wafers : Thick High Resistivity Sensor + CMOS
- Monolithic Detector (-> High circuit density, Low material)
- Standard CMOS (-> Complex functions in a pixel) •
- No mechanical bump bonding (-> High yield, Low cost)
- Full depleted sensor with small capacitance of the sense node (~10fF, High conversion gain, Low noise)
- Based on Industrial standard technology
- No Latch Up, Low SEE σ
- Low Power •
- Operate in wide temperature range (4 K-570 K (300 deg.C))
- BPW for the back-gate effect protection

Lapis Semiconductor^{*} 0.2 µm FD-SOI Pixel Process

	0.2 μm Low-Leakage Fully-Depleted (FD) SOI CMOS
Process	1 Poly, 5 Metal layers (MIM Capacitor and DMOS option)
	Core (I/O) voltage : 1.8 (3.3) V
	Top Si : Cz, ~18 Ω -cm, p-type, ~40 nm thick
SOI wafer	Buried Oxide: 200 nm thick
(200 mm	Handle wafer thickness: 725 μ m \rightarrow thinned up to ~300 μ m (Lapis)
=8 inch)	or commercial process $ ightarrow$ ~50 μ m (then, backside process)
	Handle wafer: Cz (N) ~700 Ω -cm, FZ (N) > 3k Ω -cm
Backside	Mechanical Grind \rightarrow Chemical Etching \rightarrow Back side Implant
process	\rightarrow Laser Annealing \rightarrow Al plating

*former OKI semiconductor

MPW (Multi Project Wafer)

• mask size:

24.6 x 30.8 mm²

- KEK organizes MPW runs
 ~twice a year.
- Mask is shared to reduce cost of a production.

Integration Type Pixel (INTPIX)

The pixel circuit has CDS function. 2 Capacitors (Cstore and Ccds)

INTPIX4

- Integration type SOI pixel detector (mainly for X-ray imaging)
- Chip size : 10.3 x 15.5 mm² (Effective area : 8.7 x 14.1 mm²)
- Number of pixels : 512 x 832 (~426k pixels)
- Pixel size : $17 \ \mu m^2$
- Correlated Double Sampling (CDS) Circuit in each pixel
- 13 analog out
- Wafer (n type)
 - Cz: 700 Ω-cm (260 µm thick)
 - FZ: 7k Ω-cm (500 µm thick)
- Front / Back-side illumination

Evaluation board

- Soi EvAluation BoArd with Sitcp 2 (SEABAS2)
- Gbit Ethernet
- User FPGA Virtex5
- Clock 50 MHz
- +/- 3.3 V
- ADC 16 ch
- DAC 4ch
- NIM I/O

Readout rate

- ~60 fps for readout only
- ~20 fps with data save & readout

⁹⁰Sr beta source test (Cz)

Wafer improvement (Cz->FZ)

Leakage current is lower in FZ SOI sensors. HSTD8 (2011) Cz-INTPIX4 performance study was shown. HSTD9 (this conference) FZ-INTPIX4 performance study

Spatial resolution (FZ)

- Evaluation of the spatial resolution by direct radiography in backside illumination.
- CTF (Contrast Transfer Function) of the FZ N type (500um thick) sensor is a little bit worse than the Cz N type(260um thick) sensor due to it's thicker.
- Both FZ & Cz sensors are showing good CTF!

Α

Energy spectrum (FZ)

¹⁰⁹Cd-Ka (22.2 keV) X-ray spectrum

- Bias voltage = 200 V
- Integration Time = 250 μs
- Back-side illumination
- temperature: 0 deg.C
- Single pixel hits are only selected

Gain = 17.08 μV/e-(circuit gain = ~0.8) FWHM: 14.3 % (882 e-) @22.2 keV

First X-ray spectrum taken with SOI-FZ sensor.

IV characteristics (FZ)

- Temperature: -60 deg.C ~ +20 deg.C (10 deg.C step)
- At each temperature, there is nosignificant breakdown.
- Current increase around 280V is probably caused by reaching the depletion region to side or back surface. The cause of the increase around 50V is under investigation.

Arrhenius plot (FZ)

Activation energy of the FZ sensor is less than that of the Cz sensor. Thus other source but generation current is expected.

-Ea

summary

We are developing monolithic pixel detectors using an SOI technology for X-ray and charged particle applications.

- INTPIX4 works successfully.
 - High resolution, high contrast, high rate X-ray images
- FZ sensors show good performance as well as Cz.
 - Spatial resolution: CTF 66 % @ 20 lp/mm
 - Energy resolution: FWHM 14.3 % @22.2 keV
 - ~10 times higher resistivity enables thicker sensing depth at moderate bias voltages.