2013/9/2 HSTD9-ID54

Location of bias voltage breakdown in n-in-p silicon segmented sensors with p-stop structure before and after irradiation

Y. Unno^a, S. Mitsui^a, Y. Ikegami^a, K. Hanagaki^d, K. Hara^f, O. Jinnouchi^e, N. Kimura^g, K. Nakamura^a, R. Takashima^b, Y. Takubo^a, J. Tojo^c, S. Terada^a, K. Yorita^g KEK^a, Kyoto Univ. of Edu.^b, Kyushu Univ.^c, Osaka Univ.^d, Tokyo Inst. Tech. ^e, Tsukuba Univ.^f, Waseda Univ.^g

n-in-p Structures and Measurements

- TCAD Simulation
 - Semiconductor Technology Computer-Aided Design (TCAD) tool _____
 - ENEXSS 5.5, developed by SELETE in Japan
 - **Device simulation part: HyDeLEOS**
 - N-in-p strip sensor ____
 - 75 μ m pitch, p-stop 4x10¹² cm⁻²
 - 150 µm thickness
 - p-type bulk, Neff= 4.7×10^{12} cm⁻³, V_{FDV}=80 V at 150 μ m
 - Radiation damage approximation: _____
 - Increase of acceptor-like state \leftarrow Effective doping concentration
 - Increase of leakage current ← SRH model
 - Increase of interface charge ← Fixed oxide charge Non irrad. condition Irrad. condition _____ Neff= $4.7 \times 10^{12} \text{ cm}^{-3}$ SRH An, Ap=1.0, Fixed Oxide Charge = 1×10^{10} cm⁻²

- Benefits of the n-in-p sensor
 - p-bulk: no type inversion after irradiation.
 - Mask process is required only in the top surface, thus more cost effective than double-side process.
 - n-side is the p-n junction side, always, and high electric field is anticipated.
- Issues ____
 - Positive charges are built-in and to build-up with radiation.
 - An isolation structure of n+ implants is required. We adopt the "pstop" isolation, specifically "common p-stop" structure.
 - Electric field higher than the avalanche breakdown voltage (=electric field strength, ~300 kV/cm in Silicon) leads to the breakdown of bias voltage.
 - Such a breakdown at a local spot, we call "microdischarge (MD)" as the phenomenon appears as the rapid increase of leakage current.
- Location of microdischarge
 - We have identified the location experimentally by using a highly infrared sensitive camera, so-called "hot-electron camera".

MD Onset Voltage

100

FZ1

w42z6p12:old w46z2p2:old

w66z3p13:FZ w130z3p13:F2 w222z3o18:FZ2

200 300 400 500 600

Dose[Gy]

- We have analyzed the underlying physics with a technology cad (TCAD) program.
- Irradiation
 - $-\gamma$ irradiations
- Y. Takahasi et al., Nucl. Instr. Meth. A699 (2013)107-111 200 Gy/hr, accumulated to 600 Gy Proton irradiations S. Mitsui et al., Nucl. Instr. Meth. A699 (2013) 36-40 CYRIC, Tohoku Univ. \bullet 70 MeV protons from 930AVF Cyclotron Irradiation setup in the 32 course CYRIC exp. no. 9214, e.g. Fluences: \bullet -5.2×10^{12} , 1.1×10^{13} , 1.2×10^{14} , 1.2×10^{15} n_{eg}/cm² Measurements

- Neff= 1.5×10^{13} cm⁻³, SRH An, Ap= 1×10^{-8} , Fixed Oxide Charge = 1×10^{12} cm⁻²
- Electric potential of p-stop
 - Introduction of Si-SiO2 interface charge

- Electric field becomes "flatter" due to the conductiveness of "electron" layer attracted to the positive interface charges.
- Location of Breakdown at High Voltages Between n-implants and p-stops

Fig. 9. Hot spots observed at AC pad corners. The AC pad is 60 µm wide and 200 µm long.

After γ irradiation, onset of microdischarge occurred at the n-implant, instead of p-stop edges, and "annealed" along the accumulation of dose. MD at n-implant edge could be a "corner" effect, but ... Proton irradiations Hot spots were observed first at the edge of the bias ring, and then at the inside of the edge metal.

- Non-irrad.
 - Highest electric field is at the n-implant edge ____
- Irrad •
 - Although the p-stop edge has the higher electric field at lower bias voltages, _____
 - the n-implant edge eventually takes over the highest electric field by the time of breakdown, ~300 kV/cm.
 - The rate to increase of the electric field at p-stop edge is saturating at higher voltage.
 - This is due to the diminishing electron layer attracted to the positive interface charges.

density

- Between the bias ring and the edge termination ____
 - Non-irrad.
 - Highest electric field is at the edge of the bias ring. ____
 - Irrad
 - At low voltages, at the p-edge _
 - The electron layer tends to diminish but not fast enough.
 - Still need to tune the TCAD simulations.

Bias voltage -700V	Bias voltage -1700V	Bias voltage -1700V
		1e+20 ┓ ■

Summary

2000

- Experimentally, we have been observing that the breakdown locations are at the n-implant edge before and after irradiation.
- This has been understood with TCAD simulation that the conductive electron layer attracted to the interface positive charges is diminishing as the bias voltage is increased.
- It is clearly demonstrated in the active sensor area.
- The similar trend is shown in the edge termination area, but not clear yet. _____