Simulation on silicon tracker for the TAC-PF Detector

Ilhan TAPAN* and F. Belgin Pilicer
Uludag University
Physics Department
Bursa-Turkey

* on behalf of TAC-PF group

9th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors, Hiroshima, Japan

Ninth International "Hiroshima" Symposium on the Development and Application of the Development

Outline

- Turkish Accelerator Center (TAC) project
- TAC Particle Factory (PF) Detector and Tracker
- Simulation works

Momentum resolution
Particle track- Energy deposition
- Spot size calculation

- Conclusion

Turkish Accelerator Center (TAC) Project

The mission of TAC is to design, construct and use high energy particle accelerators for scientific researches in Turkey and in the region and to collaborate with international HEP community.

Turkish Accelerator Center (TAC) Project

The ongoing project has three main parts

- 1) Accelerator Based Light Sources,
- 2) Proton Accelerator (PA)
- 3) Particle Factory (PF)

An electron-positron collider as a "super charm factory"

A 1 GeV electron linac and a 3.56 GeV positron ring for linac on ring type collisions and a dedicated detector "TAC-PF Detector"

Turkish Accelerator Center (TAC) Project

TAC super charm factory collider parameters

Parameter	Positron ring	Electron ERL
Positron Beam energy (GeV)	3.56	1
Number of positron per bunch (10 ¹¹)	2	0.2
Beta Functions at IP β_x/β_y (mm)	80/5	80/5
Normalized emittance $\varepsilon_x^N/\varepsilon_y^N$ (µm rad)	111/0.36	31/0.1
$\sigma_{\rm x}/\sigma_{\rm y}(\mu{\rm m})$	36/0.5	36/0.5
σ_{z} (mm)	5	5
Beam –beam tune shift (ξ_x/ξ_y)	0.012/0.13	
Energy loss/Turn (MeV)	0.7	
Number of bunches	300	
Circumference (m)	600	
Beam Current (A)	4.8	0.48
Momentum Acceptence (%)	1	
Luminosity (cm ⁻² s ⁻¹)	1.4×10^{35}	

TAC-PF detector

Ilhan Tapan

Simulation on silicon tracker for the TAC-PF Detector

TAC-PF tracker

Five individual modules with 4 cm distances between them. Each module has two parallel silicon strip detector planes. (carbon+ silicon + 2 cm gap + carbon + silicon)

TAC-PF tracker

	Radius [cm]	z extend [cm]	number of Si sensor	
1 - 2 layer	8.0-10.0	32.0	192+240	
3 - 4 layer	14.0-16.0	56.0	638+726	
5 - 6 layer	20.0-22.0	80.0	600+690	
7 - 8 layer	26.0-28.0	104.0	1080+1160	
9 - 10 layer	32.0-34.0	128.0	1650+1750	

TAC-PF tracker – Momentum resolution

Two main parameters contribute on transverse momentum resolution;

Contribution from measurement error:
 Sagitta s defines trajectory uncertanities and measured inside the magnet region via the measurement of three space points

Simulation on silicon tracker for the TAC-PF Detector

TAC-PF tracker – Momentum resolution

Measurement of curvature R and lever arm L provides Sagitta determination

$$s = \frac{L^2}{8R}$$
 as $\frac{\sigma p_T}{p_T} = \frac{\sigma s}{s}$ thus $\frac{\sigma p_T}{p_T} = \frac{8p_T}{0.3BL^2} \sigma s$; $\frac{\sigma p_T}{p_T} \propto P_T$

 σS ; sagitta measurement error

The resolution becomes worse with momentum and improves as 1/BL²

2. Multiple Scattering contribution to momentum uncertainty:

Due to presence of material inside the tracker, will result in wiggling of the track and consequently to mis-measurements of the curvature.

$$\frac{\sigma p_T}{p_T} = \frac{0.05}{BL} \sqrt{\frac{x}{X_0}}$$

 $\frac{\sigma p_T}{p_T} = \frac{0.05}{BL} \sqrt{\frac{x}{X_0}}$ It is momentum independent and improved only as 1/BL

Together with total momentum resolution
$$\frac{\sigma p_T}{p_T} = \frac{8\sigma s p_T}{0.3BL^2} \bigoplus_{BL} \frac{0.05}{M} \left(\frac{x}{X_0}\right)$$

500

Mean

RMS

0.2175

0.001372

FLUKA with precision physics (1GeV e+ @ 1T)

From this graph
$$\frac{\sigma s}{s} = 0.01897 \sim 1.9\%$$

Precision physics include both multiple scattering term and measurement term

$$\frac{\sigma_S}{s} = \frac{\sigma p_T}{p_T} = \frac{8\sigma s p_T}{0.3BL^2} \bigoplus_{BL} \sqrt{\left(\frac{x}{X_0}\right)}$$

FLUKA with precision physics and suppress multiple scattering (1GeV e+ @ 1T)

From this graph
$$\frac{\sigma s}{s} = 0.004731 \sim 0.5 \%$$

This value includes only measurement term.

To suppress multiple scattering in silicon

MULSOPT card is used.

FLUKA results for

Simulation works - Momentum resolution e+ @ 1 GeV and 1T

suppressing multiple scattering

$$\frac{\sigma p_T}{p_T} = \frac{8\sigma s p_T}{0.3BL^2} = 0.0046 = 0.46 \%$$

 $\sigma_s = 0.001 \,\text{cm} = 0.00001 \,\text{m}$ @ 1 GeV and 1T

$$L = 24.08 \,\mathrm{cm} = 0.2408 \,\mathrm{m}$$

$$\frac{\sigma p_T}{p_T} = \frac{0.05}{BL} \sqrt{\frac{x}{X_0}} = 0.0167 = 1.67 \%$$

 $x_0 = 0.0936 \text{ m (Si)}, 0.25 \text{ m (C)}$

$$\frac{\sigma p_T}{p_T} = a p_T \bigoplus b \qquad \frac{\sigma p_T}{p_T} = 0.46 \bigoplus 1.67 = 1.74 \%$$

Sagitta measurement error variation with momentum

Relative momentum resolution variation with momentum

Ilhan Tapan

Simulation on silicon tracker for the TAC-PF Detector

HSTD9, 1-5 September 2013, Hiroshima, Japan

The state of the s	702	21	
	(1GeV Measurement [%]	Multiple Scattering term [%]	σ _{Pt} /P _T [%]
Positror	n 0.46	1.67	1.74
Pion+	0.47	1.50	1.57
Kaon+	0.53	1.69	1.77

Ilhan Tapan

Simulation on silicon tracker for the TAC-PF Detector

HSTD9, 1-5 September 2013, Hiroshima, Japan

Simulation works – Particle tracks- Energy deposition

Simulation works - Energy deposition

Ilhan Tapan

Simulation on silicon tracker for the TAC-PF Detector

HSTD9, 1-5 September 2013, Hiroshima, Japan

Simulation works - Energy deposition

Deposited energy resolution vs η at different electron energies

Deposited energy resolution vs momentum at different ηs

Simulation works - Energy deposition

Deposited energy resolution vs momentum at different ηs

Simulation works – Particle tracks- Spot size

Ilhan Tapan

Simulation on silicon tracker for the TAC-PF Detector

HSTD9, 1-5 September 2013, Hiroshima, Japan

Spot size

Calculated spot size is the standard deviation of the charged particles path due to the scattering in Si layer.

Spot size variation with incident particle momentum

Spot size

Spot size variation with incident particles momentum

Conclusion

Simulation shows for the designed tracker structure with 200 micron Si layer that;

- Gives momentum resolution ~ 0.5 % from the measuremets
 ~ 1.6 % due to the multiple scatt.
- Energy deposition rate is OK for the energy loss measuremets and energy resolution ~ 7 % up to 2 GeV

gets better with increasing η

 As the calculated spot sizes small, the proposed pitch width of 50 micron would be fine below 2 GeV.

Sigma s-sigma y

$$\sigma = \frac{d}{\sqrt{12}}$$
 d; the width of the pitch that would record the signal