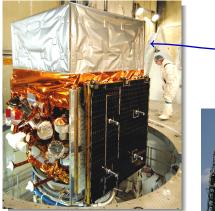


HIGHLIGHTS FROM THE FERMI LARGE AREA TELESCOPE AFTER 5 YEARS OF OPERATIONS


Carmelo Sgrò

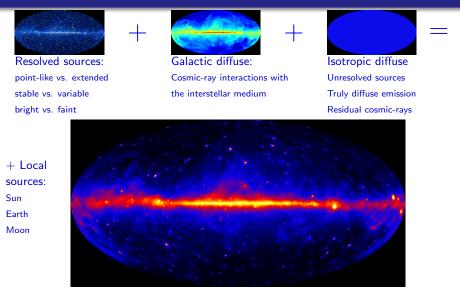
INFN–Pisa carmelo.sgro@pi.infn.it

on behalf of the Fermi LAT collaboration

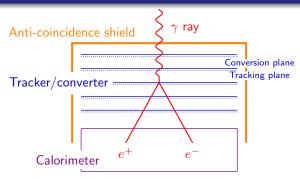
HSTD9 - September 5, 2013

THE FERMI OBSERVATORY

- Launched by NASA on 2008 June 11, from Cape Canaveral, Florida
- Launch vehicle: Delta II Heavy
- Almost circular orbit, at 565 km altitude and 25.6° inclination


Large Area Telescope (LAT)

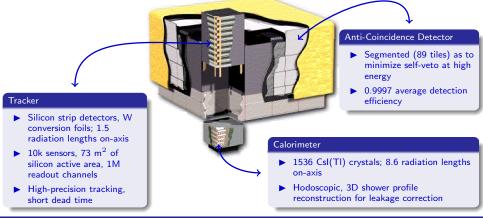
- ▶ Pair conversion telescope
- ► Energy range: 20 MeV >300 GeV
- Field of view: $\sim 2.4 \text{ sr (at 1 GeV)}$
- Effective area: $\sim 6500 \text{ cm}^2$ on axis (at > 1 GeV)


Carmelo Sgrò (INFN-Pisa)

FERMI SCIENCE TARGET The γ -ray sky above ~ 20 MeV

+ New Physics (DM search)

DETECTION PRINCIPLE



- Standard technique for high-energy γ -ray astrophysics
 - Dominant interaction mechanism for $E > \sim 20 MeV$
 - Used by past experiment like COS-B and EGRET
- ▶ γ -ray converts in the middle of Tracker/Converter → γ -ray direction
- ▶ Calorimeter absorb part of the e.m. shower $\rightarrow \gamma$ -ray energy
- \blacktriangleright No signal in the Anti-coincidence shield \rightarrow charged particle discrimination

THE LARGE AREA TELESCOPE Atwood, W. B. et al. 2009, ApJ, 697, 1071

Large Area telescope

- Overall modular design
- ▶ 4 × 4 array of identical towers (each one including a tracker and a calorimeter module)
- Tracker surrounded by an Anti-Coincidence Detector (ACD)



THE TRACKER/CONVERTER DESIGN Atwood, W. B. et al. 2007, Astropart. Phys., 28, 422434

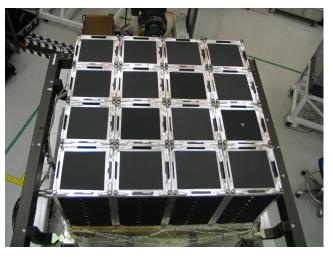
3% X ₀ W
Crox.
<u>Front</u>
<u>Front</u>
<u>Front</u>
<u>Front</u>
Cront
Cront
18% X ₀ W
Raci

- ▶ 18 *x*−*y* detection planes
 - Single sided SSDs, below the W foils
- 19 trays in a tower
 - Basic mechanical structure
- ► Front: 12 planes with 0.03 X₀ converter
 - Best angular resolution
- Back: 4 planes with 0.18 X₀ converter
 - Increase the conversion efficiency
- Bottom: 2 planes with no converter
 - Tracker trigger needs at least 3 × -y layers
- ► Total depth: 1.5 X₀ on axis

THE TRACKER STRUCTURE

- The Single-sided Silicon Strip Detector
 - AC-coupled
 - Outer size $8.95 \times 8.95 \text{ cm}^2$
 - Strip pitch 228 μm
 - Thickness 400 µm
 - Depletion voltage < 120 V
 - Leakage current 1 nA/cm² @ 150 V
 - Fabricated at HPK
- ► The ladder
 - 4 SSD glued and bonded together
 - ► To form a ~ 36 cm long strip detector

THE TRACKER STRUCTURE

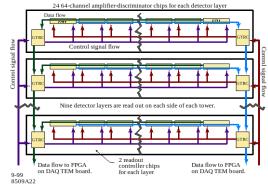


Tray Structure

- Detectors are glued on both surfaces
- W converter on bottom face
- Electronic board on the side
 - ▶ 90° pitch adapters
 - readout via flat cables
- Tower assembly
 - Each tray is rotated 90° wrt the next one

THE LAT TRACKER

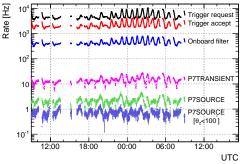
18 LAT TKR modules (16 + 2 spares) were integrated, tested and qualified for space use in 9 months


- $\blacktriangleright \sim 2 \mbox{ mm}$ spacing between silicon layers
- \blacktriangleright ~ 2 mm separation between towers

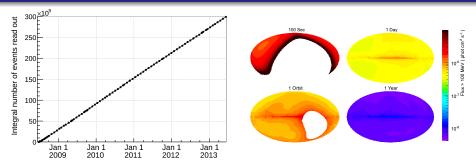
- $\blacktriangleright~\sim73~m^2$ of silicon detectors
- ► 884,736 readout channels

THE TRACKER ELECTRONIC SYSTEM BALDINI, L. ET AL. 2006, IEEE TRANS. ON NUCL. SCI., 53, 466–473

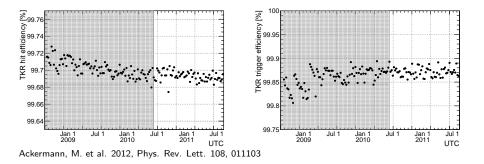
Basic design


- Digital readout
- 24 front-end chips and 2 controllers handle one Si layer
- Data can shift left/right to either of the controllers (can bypass a dead chip)
- Zero suppression in the controllers (hit strips + layer OR TOT in the data stream)
- Two flat cables complete the redundancy

Key features


- Low power consumption ($\approx 200 \ \mu W/channel$)
- Low noise occupancy (pprox 1 noise hit per event in the full LAT)
- Self-triggering (three x-y planes in a row, i.e. sixfold coincidence)
- Redundancy, Si planes may be read out from the right or from the left controller chip

TRIGGER


- Triggering on (almost) all the charged particle that crosses the LAT (~2 kHz)
- ▶ Programmable on-board filter to fit the data volume into the allocated bandwidth (~1.5 Mb/s average).
- Most of the ~400 Hz of events passing the gamma filter and downlinked to ground are actually charged-particle background
- ► All subsystems contribute to the L1 hardware trigger:
 - TKR: three consecutive TKR x-y planes hit in a row
 - CAL LO: single CAL log with more than 100 MeV (adjustable)
 - CAL HI: single CAL log with more than 1 GeV (adjustable)
 - ROI: MIP signal in the ACD tiles close to the triggering TKR tower
 - CNO: signal in one of the ACD tiles compatible with a heavy

5 YEARS IN ORBIT

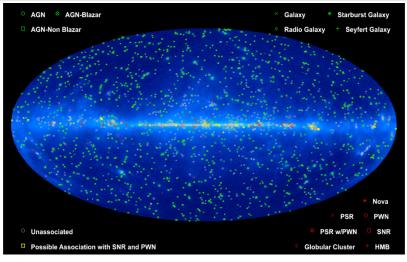
- More than 99% up-time collecting science data (out of the SAA)
 - Including detector calibrations/hardware issues
 - \blacktriangleright Fraction of time in side SAA is $\sim 13\%$
- Primary mode: sky survey
 - Scan entire sky every 3 hours
 - 1 orbit rock north, 1 orbit rock south
 - LAT boresight stays away from the Earth
- Autonomous Repoint Request
- Target of Opportunity

THE TKR IN ORBIT

No significant degradation in time

- Small trend in efficiency
- Consistent with number of masked TKR strips

THE ACD AND CAL IN ORBIT

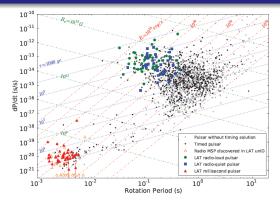


No significant degradation in time

 \blacktriangleright CAL crystal light yield attenuation due to radiation damage ($\sim 1\%/{\rm year}$ as expected)

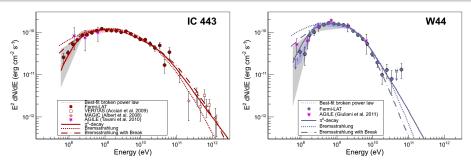
THE SECOND FERMI CATALOG (2FGL)

http://fermi.gsfc.nasa.gov/ssc/data/access/lat/2yr_catalog/


- ▶ Dataset: 24 months of data (100 MeV-100 GeV), 35.7 M events
- 1873 sources (the deepest catalog ever in this energy range)

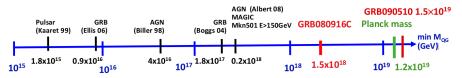
TOWARDS THE THIRD FERMI CATALOG J. BALLET, ICRC 2013

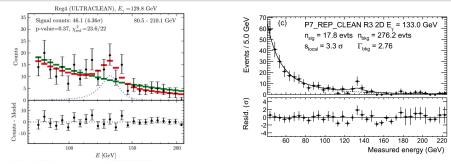
Larger dataset


- ▶ Double the exposure time: 4 years from August 2008 to July 2012
- Energy range from 100 MeV to 300 GeV
- Higher data quality \rightarrow Reprocessed data
 - Improved LAT calibration
 - Better high-energy Point Spread Function
 - Better source localization
- Upgraded interstellar emission model
- Significantly deeper than 2FGL, some 2500 sources
- Association rate similar to 2FGL
- In preparation, will be available soon...

The Fermi-LAT Catalog of γ -ray pulsars arXiv 1305.4385, accepted by ApJS

- Huge increase in number of known γ -ray pulsars
 - From ~ 6 pre-Fermi-LAT to 117 now
- Large fraction ($\sim 1/2$) of young γ -ray pulsars are radio-quiet
 - γ-ray beam is wider than radio beam
- \blacktriangleright Radio searches on LAT sources discovered $>40~{\rm MSPs}$
 - Potential for nHz, kilo-parsec scale gravitational wave detection array

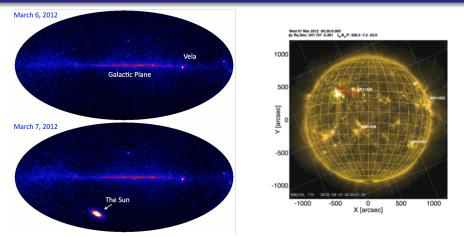

PROTON ACCELERATION SIGNATURE IN SUPERNOVA REMNANT Ackermann et al. Science 2013, 339, 807 2013


- Clear indication of low-energy "turnover"
 - The pion-decay "Bump"
- Gray systematic error band dominated by uncertainties on the diffuse emission
- ► Leptonic models (Bremsstrahlung or Inverse Compton) disfavored
- Most of the γ -ray emission must be of hadronic origin

LIMITS ON LORENTZ INVARIANCE VIOLATION Abdo A.A. 2009 Nature 462 331-334

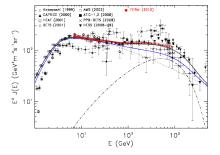
- Quantum gravity predicts Lorentz Invariance Violation (LIV) near Planck scale (10¹⁹ GeV)
- GRB emits short light pulse at great distance: can probe variation in arrival time (light speed) as function of energy
- ► GRB 090510 (z=0.9): we see a 31 GeV photon less than 1 second after the first X-ray photons, after traveling >7 billion light years
- ► This requires the quantum-gravity mass scale to be at least 1.2 times the Planck mass
- Assuming dispersion: $\nu = \delta E / \delta P \sim c (1 (E/E_{QG})^n)$ with n = 1
- Assuming that the GeV photons are not emitted before the X-ray burst

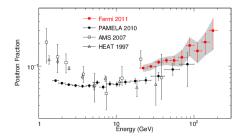
SEARCH FOR SPECTRAL LINES



Bringmann+ [arXiv:1203.1312], Weniger [arXiv:1204.2797]

A. Alberts at TeVPA 2013


- Line emission from dark matter annihilation or decay ($\gamma\gamma$ and $Z\gamma$ channels)
- No significant detection in the Region of Interest searched
- \blacktriangleright A line at $\sim 130~{\rm GeV}$ from the Galactic Center?
 - Recent claims triggered a huge interest
 - Comprehensive Fermi LAT team analysis ongoing
 - 3.3 σ (local) significance with ~ 4 years of data
 - Line-like feature observed also in Earth Limb
 - Paper submitted (http://arxiv.org/abs/1305.5597)


γ -ray flares from the Sun

- We are close to maximum of the Sun cycle
 - $\blacktriangleright~\sim 20$ flares seen by the LAT up to now
- A very bright Solar Flare was detected on March 7, exceeding 1000 times the γ-ray flux of the steady Sun and 100 times the flux of Vela
 - \blacktriangleright High energy emission (>100 MeV, up to 4 GeV) lasted for ~ 20 hours

Not only γ -rays: Cosmic Ray Electrons

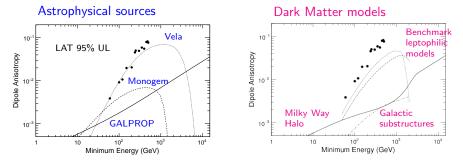
Abdo, A. A. et al. 2009 PRL 102, 181101 Ackermann, M. et al. 2010 PRD 82, 092004

Ackermann, M. et al. 2012, Phys. Rev. Lett. 108, 011103

- Systematics limited spectrum from 7 GeV to 1 TeV
 - Standard γ-ray reconstruction
 - Dedicated event selection
- Separate electron and positron spectra and fraction
 - Using the Earths magnetic field as charge discriminator
 - Limited by statistics at high-energy, as we need special data-taking runs (looking down for this analysis)

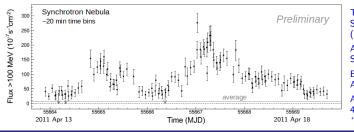
A NEW EVENT RECONSTRUCTION: PASS8 W. Atwood et al, 2012 Fermi Symposium proceedings, arXiv:1303.3514

- Extensive review of all the reconstruction algorithms
- Based on the experience with flight data
- ► CAL Recon: multiple clusters, improved shower profile fit
- TKR Recon: new tree-based pattern recognition
- Performance improvement:
 - Larger acceptance
 - Better PSF at high energy
 - Wider energy range
 - Better control of systematic uncertainlty


SUMMARY

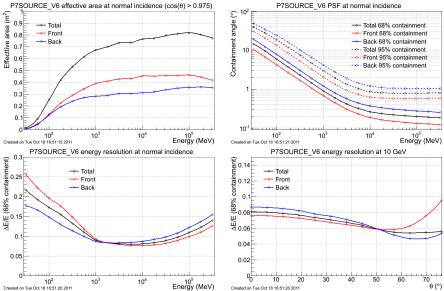
- ► The Fermi Large Area Telescope has proven to be an excellent telescope for gamma rays above ~20 MeV
- Extended operations began June 2013
- LAT operations extremely stable
 - All subsystem working properly, no performance degradation
- New Pass8 gamma-ray analysis will enhance acceptance and resolution starting late 2013
- Remember, Fermi data are publicly available
 - ► Get data and analysis software at Fermi Science Support Center
 - http://fermi.gsfc.nasa.gov/ssc/

CRE ANISOTROPIES Abdo A. A. et al., 2010, Phys. Rev. D 82, 092003

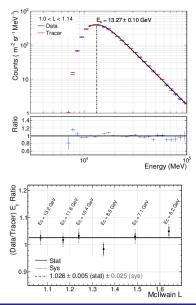

- Fermi offers a unique opportunity for the measurement of possible anisotropies
 - Large exposure and complete sky coverage
- Current results based on one year of data, more than 1.6 M CRE candidate above 60 GeV
- Limits on dipole anisotropy is a valuable tool to constrain models
 - Dominance of a single, very bright nearby source is disfavored
 - Dark Matter models predict a smaller effect

VARIABILITY: THE CRAB FLARE CASE STANDARD CANDLE NO MORE

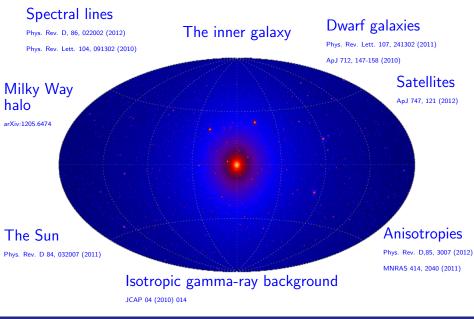
- Many of the point sources show temporal variability...
- ...but the flare of the Crab nebula was a surprise
 - 5 episodes from 2007 up to now
- The wind emanating from a rotating neutron star (Crab Nebula) produces strong γ-ray flux
- Those γ rays are produced by energetic (PeV) electrons (via synchrotron), but not clear how to accelerate them
- Rapid variability (~hours) constrains the size of electron acceleration region



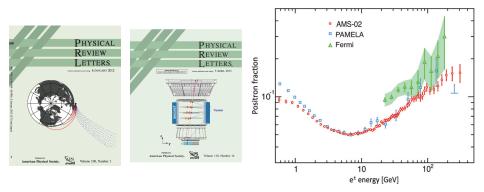
Tavani et al. 2012 Science 331 736-739 (AGILE) Abdo A.A. et al. 2011 Science 331 739-742 Buehler R. et al. 2012 ApJ 749 26 Atel 4239 on 2012 July 4^{th} (to celebrate the "Higg discovery")


INSTRUMENT RESPONSE FUNCTION

http://www.slac.stanford.edu/exp/glast/groups/canda/lat_Performance.htm


Carmelo Sgrò (INFN-Pisa)

IN-FLIGHT ENERGY SCALE CALIBRATION EXPLOITING THE $e^- + e^+$ geomagnetic rigidity cutoff


- The value for the cutoff rigidity can be predicted using a particle tracing code
 - Using code written by Smart & Shea (Final Report, Grant NAG5-8009, 2000)
 - Cross checks on the fidelity of the geomagnetic field model have been performed using rigidity measurements from other satellites such as SAMPEX and HEAO-3
- Comparison of predicted and measured values provides an opportunity to perform an in-fight verification
- By using different McIlwain L intervals we obtain several calibration points from 6 to 13 GeV
 - The energy scale is known within 5% (in this energy range)
- Details in: Astropart. Phys., 35, 346 (2012)

SEARCH FOR DARK MATTER

RECENT UPDATES ON POSITRON FRACTION

- Recent AMS-02 results in agreement with Pamela
 - Confirm positron fraction rising above 10 GeV
- AMS-02 is a cosmic-ray detector, with a permanent magnet for charge separation
- Fermi exploits the Earth magnetic field

