

DEPFET pixels as a vertex detector for the Belle II experiment

Shuji Tanaka High Energy Accelerator Research Organization (KEK) On behalf of the DEPFET collaboration

HSTD9

DEPFET pixels as a vertex detector for the Belle II experiment

SuperKEKB (KEKB upgrade)

- Longer Touschek lifetime ∝ E³
- Intra-beam scattering effect to emittance

- Lower emittance linac beam $\propto 1/E^2$
- Lower Synchrotron radiation loss

Nano beam scheme

							-
paramatara		KEKB SuperKEKB					
parameters		LER	HER	LER	HER	units	
Beam energy	Eb	3.5	8	4	7.007	GeV	
Half crossing angle	φ	11		41.5		mrad	
# of Bunches	N	1584		2500			
Horizontal emittance	٤x	18	24	3.2	5.3	nm	
Beta functions at IP	βx [*] / <mark>β</mark> y [*]	1200/ <mark>5.9</mark>		3.2 <mark>/0.27</mark>	2.5/ <mark>0.30</mark>	mm	
Beam currents	l _b	1.64	1.19	3.6	2.6	Α	
Vertical Beam Size	σγ	0.9)4	0.048	0.062	um	
Luminosity	L	2.1 x 10 ³⁴		8 x 10 ³⁵		cm ⁻² s ⁻¹	

× 20

X 2

3

Belle II detector

Higher backgrounds (× 20) \Rightarrow higher occupancy, radiation damage Higher event rate \Rightarrow faster trigger, DAQ, computing Special requirements, e.g. hermeticity (v reco.)

Vertex detector upgrade

DEPFET Pixel Mockup

-10

Inner most layer: 2cm (Belle) -> 1.4cm (BelleII)
Outer coverage: 8cm (Belle) -> 13.5cm (BelleII)

Belle: SVD (4 layers)

Silicon Vertex Detector

Beam pipe inner radius: 10mm (15mm : Belle)

pixel layers

20

10

30

[cm]

lavers

-20

20

10

-30

[cm]

Belle II pixel detector

Belle II environment:

- Occupancy : 0.4 hits/ μ m²/s
- average particle momentum: ~500 MeV
- Radiation tolerance: > 1Mrad/year
- Acceptance: 17⁰-155⁰
- Higher vertex resolution -> lower material budget

(Since Lorentz boost factor on Belle II is 67 % of Belle case, vertex resolution should be better according to this)

- Each pixel work as a p-channel FET on a completely depleted bulk.
- The signal electrons created in depleted bulk drift to the "internal gate".
- Internal amplification ->q-I conversion:

 $g_q \sim 0.4$ nA/e

 6000 e- and hole pairs in Depleted bulk for MIP, ~50 nA noise

The advantage of the DEPFET sensor are:

- -Large signal from the depleted bulk
- -Low noise due to low capacitance and
- -internal amplification
- -Low power consumption
- -Fast readout (~100 ns/pixel)

DEpleted P-channel FET

Thinning technology

 Most of the tracks at Belle II are at low momenta and vertexing performance is limited by multiple scattering. The high S/N of a DEPFET allows for very thin detectors reducing MS error substantially.

gate

DEPFET- matrix

n x m pixel

drain

0 suppression

Read-out scheme

reset

Valear of

VCI FAR-CONTROL

VOLEAR OF

- DEPFET pixel arranged in grid
 - Row wise read-out mode
 - "Rolling shutter mode"
 - 20 µs/frame (4 rows in parallel)
- Row selected with external gate and clear of internal date

- Switcher

- Digitizing drain current
 - Drain Current Digitizer(DCDB)
- Pedestal subtraction and zero suppression for each pixel
 - Data handing processor(DHP)

Average Pedestal Current ~50 μA Common mode correction in a row: 200 μA

Rough Pedestal Fluctuation compensation ~32 μA

Signal ~ 0.4nA/e = **2-3 uA** (75μm Si) ADC range :**16 μA**

ADC

DAC

Switcher

Control of gate and clear 32 x 2 channels Switches up to 30V AMS 0.18 µm HV technology Tested up to 36 Mrad

DCDB

Amplification and digitization of DEPFET signals 256 input channels 8-bit ADC per channel 92 ns sampling time UMC 180nm, rad hard design

DHP

Signal processor (320MHz) Common mode correction Pedestal subtraction 0-supression Timing and trigger control TSMC 65nm, rad hard design

PXD assembly

Performance

- Beam test by 120 GeV pion beam
- Position resolution =8μm
- S/N=30~40

Hit Residual X RMS90 ETA ZS3

Gated mode (Blind mode for injection BG)

Sensor filled with hits from injected bunches for each turn for 4ms passing Belle II => ~ 20% dead time PXD readout takes 20us for one frame

Gating : Sensor is made blind for a short time during high background (noisy bunch) Signals detected in the clean period before are preserved

BG sources and Radiation tolerance

- Radiation environment
 - 4-fermion final state QED process
 - Touschek effect
 - Beam-gas interactions
 - Synchrotron radiation
 - Radiative Bhabha scattering

Occupancy by eac	Layer 1	Layer 2	
Touschek	LER	0.1 %	0.07 %
Touschek	HER	0.0 %	0.0 %
Beam-Gas Coulomb	LER	2.10-4 %	1.104 %
Beam-Gas Coulomb	HER	0.0 %	0.0 %
Radiative Bhabha	LER	5·10 ⁻³ %	2·10 ⁻³ %
Radiative Bhabha	HER	0.03 %	0.01 %
Two-Photon QED	_	0.8 %	0.2 %
~Total		0.9 %	0.3 %

Synchrotron radiation(very preliminary): 0.14 % (one ladder in horizontal plane: ~1.8%)

Still under investigation

PXD sensor damage by

- 1, Surface damage or oxide damage
- 2, Bulk damage

Threshold voltage shift of 6V after 100kG (10Mrad) by optimizing nitride thickness.

(Silicon nitride layer is covered on thin silicon oxide) $Si_{SiO_2}^{Si_3N_4}$

PXD mechanics

2013/9/3

DEPFET pixels as a vertex detector for the Belle II experiment

Thermal management

- 360 W total power dissipation which is dominated by ASIC operation outside the acceptance region
- Mount block cooling by liquid CO2 and air cooling

Temperature, °C

Conclusion

- SuperKEKB with 40 times higher luminosity compare to KEKB provides an opportunity to study high precision indirect searches for Physics beyond SM.
- Pixel detector based on DEPFET technology fits all requirements of
 - Vertex resolution
 - Low power consumption
 - Low material budget
 - Gated mode to blind noise signals from beam injection BG
- The DEPFET PXD has entered the construction phase
 - VXD system combined beam test with scaled down Belle II DAQ is scheduled in coming January.
- PXD system will be assembled in 2015 and first physics runs are scheduled in 2016

Improving precision on CKM picture, search for deviations:

- Complementary to LHC searches
 - Previous examples include modes with missing energy.

-
$$B \rightarrow \tau \nu$$
, $B \rightarrow D^{(*)} \tau \nu$, $B \rightarrow K^{(*)} \nu \nu$

DEPFET

Belle II

DEPFET pixels as a vertex detector for the Belle II experiment

Belle II Schedule

