High-speed Light Peak optical link for high energy applications

S. Hou, D.S. Su, P.K. Teng Academia Sinica, Taipei, Taiwan

F. Chiang, J. Hou FOCI Fiber Optic Comm., Inc., Hsinchu, Taiwan

T.K. Liu, J.B. Ye Southern Methodist Univ., Dallas, TX, USA

C.H. Wang Nat'l United Univ., Miaoli, Taiwan Sep. 01- 05, 2013 Hiroshima

9th Hiroshima Symposium on the Development & Application of Semiconductor Tracking Detectors,

Outline

- Light Peak optical link for HEP

HEP developments vs Industrial products FOCI light peak module : light coupler, driver Advantages and requirements Speed, Bit-Error-Rate


- Radiation tests

Beam test with 30 MeV proton at INER Light coupler deterioration Non-Ionizing-Energy-Loss to driver

HEP optical modules

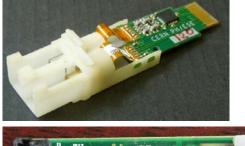
- HEP applications: advantages over copper wiring
 - low mass for inner tracking
 - zero cross-talk, long distance
- HEP developments: (modules by IPAS)
 - CDF: edge-emitting laser, 9 ch. parallel with ceramic 90° mount
 - ATLAS SCT: VCSEL with 45° fiber ends for coupling
 - Difficulties: light coupling to fiber,

production yields, uniformity,

HEP transceivers vs Commercial products

- IT industry: telecommunication and computing

- 10 Gb/s links with SFP+ transceivers for professional facilities
- 4.8 Gb/s USB3 for personal computing and household electronics


- Off-the-shell to HEP

- Laser, PIN are commonly rad-hard
- TOSA/ROSA, relieved coupling issue
- Driver/controller ASICs of old CMOS processes are not rad-hard
- Outer detector transceivers with rad-hard drivers

CERN VTRx

SMU


- CERN Versatile links, 850 nm, MM, GBLD (IBM 130 nm)
- SMU Multi-TX, 850nm, MM, LOCId (SOS .25 μm)

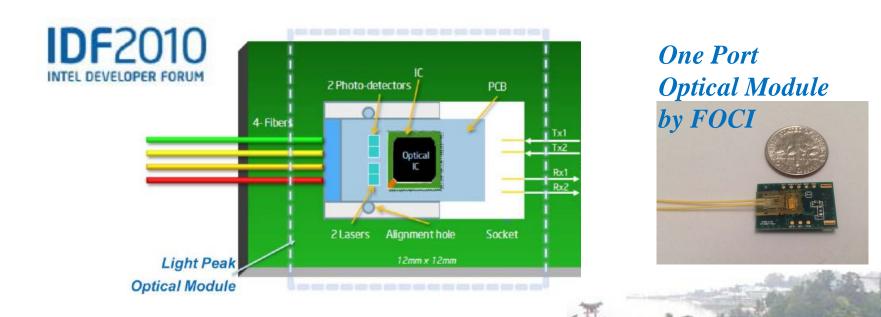
10 GB/s SFP+

with Micrel drivers/controller

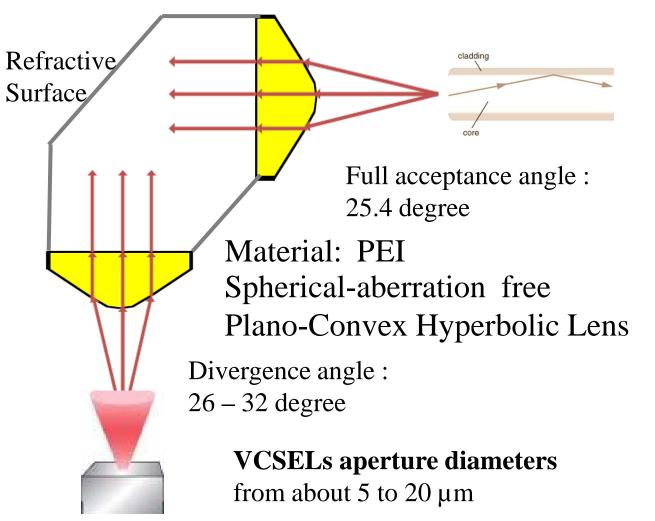
Total Ionizing Dose to Commercial

- QSFP, miniPOD, PPOD, ONET8501V, ONET1101L
 tested with X-ray or γ-ray, none meet the ATLAS LAr radiation requirement.
- Kintex 7, ONET8501
 tested with a neutrons in Los Alamos SEU rate of Kintex 7 is too high for LAr.

	Vendor	Part#	Gbps	# ch	Rad type	(krad/hr)	TID (krad)
QSFP	Avago	AFBR-79EIDZ	10	4	⁶⁰ Co γ	10	75
miniPOD	Avago	AFBR-810FN1Z	10	1	x-ray	360	66
PPOD	Avago	AFBR-810EPZ	10	12	x-ray	360	150
VCSEL driver	TI	ONET8501V	10	1	x-ray	39	178
F-P laser driver	TI	ONET1101L	10	1	x-ray	9.6	464
					⁶⁰ Co γ	10	< 900

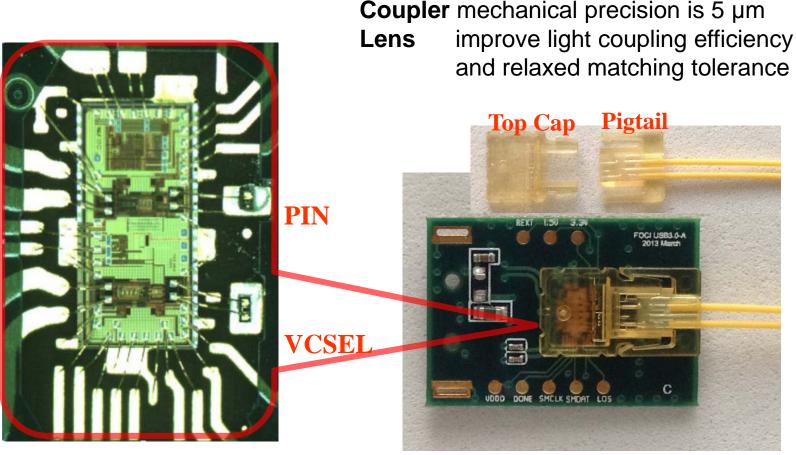

	Vendor	Part#	# of ch	Flux (n/cm²/s)	Fluence (n/cm ²)	# errors	σ (cm²)
Kintex-7	Xilinx	XC7K325TFF G900	16 (2 tested)	4.6E5	2.1E11	4/4 (2 shared)	1.6E-11
VCSEL driver	TI	ONET8501V	1	4.6E5	2.1E11	0	< 5E-12

SMU, TWEPP2012



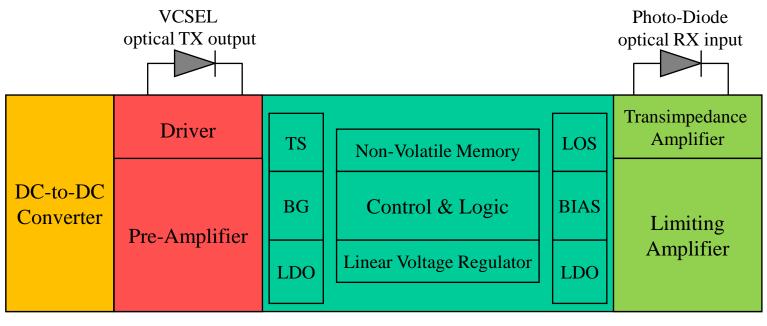
Light Peak Technology

- Light Peak, Intel technology delivers high bandwidth starting at 10 Gb/s to mainstream computing and consumer electronics in a cost-effective manner
- Multiple I/O protocols, simultaneously over a single cable, enabling connection between peripherals, workstations, displays, disk drives, docking stations ...



Light Peak Optical module

FOCI Light Peak module


Optical IC

VIA Labs USB 3.0 Active Optical Cable Solution Demonstrated at CES 2012 Collaboratively developed with FOCI, PCL, OpTarget and UMEC, the VIA Labs V0510 optical transceiver extends the reach of **USB 3.0** to over **100 meters**

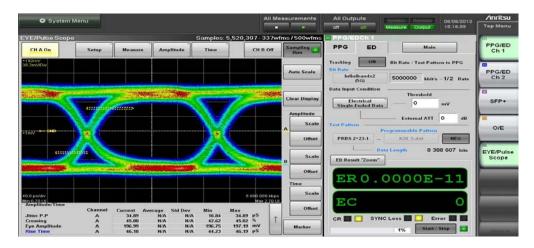
FOCI module functional diagram

VCSEL/PIN: 850 nm bare die, 4.8 Gb/s or 10 Gb/s, >0 dBm (1mW)

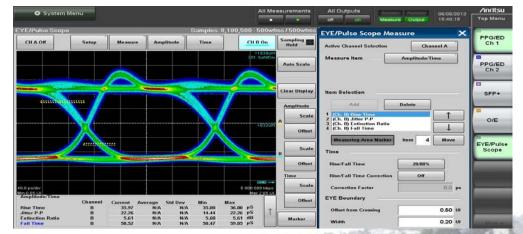
Optical IC: VIA Labs V0510, TSMC 90nm technology USB-3 protocol, ~60 mW, 4.8 Gb/s TX/RX driver+ regulator/controller

Electrical

RX output


Electrical TX input

LOS: Lost Of Signal Detector TS: Temperature Sensor BG: Band Gap Reference LDO: Low Drop Out voltage regulator


Bit Error Rate test

RX – Jitter P-P 34.89 ps, Crossing 45 %, Eye Amplitude 197 mV, Rise Time 46.18 ps

TX – Rise Time 35.97 pS, Jitter P-P 22.26 ps Extinction Ration 5.61, Fall Time 58.52 pS

or other states of the local division of the

10

Radiation damage to coupler cap

- The light coupler cap

Spherical-aberration free Plano-Convex Hyperbolic Lens Material: PEI (polyetherimide), as for the TOSA/ROSA tip optical quality surface

Deterioration by Total-Ionizing-Dose

Irradiated with Co⁶⁰ Gamma ray at INER Taiwan flux: 3.5 kGy/hr, total: **117 kGy**

→ NO LOSS !!

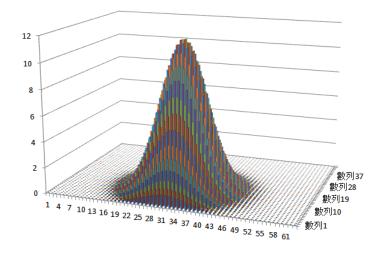
for light transmission within the 2% systematic error

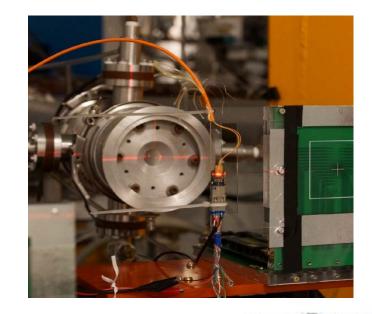
Non-Ionizing Energy Loss to VCSEL, Optical IC

Proton Irradiation

INER 30 MeV proton beam flux of 3.5x10¹⁰ p/cm²s, to a total **1.2x10¹⁴** equivalent to **8.9x10¹⁴** n(1MeV)/cm²s

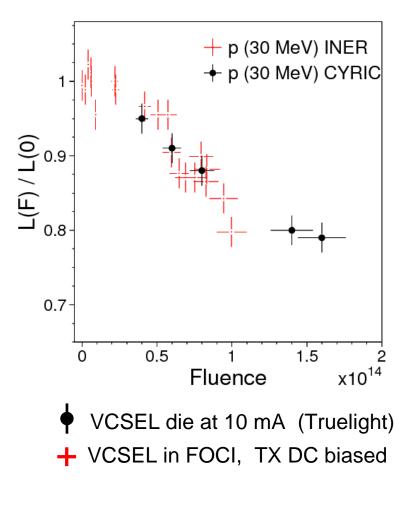
- Beam profile


Strip and pad chambers for beam profile strip pitch 1 mm


Irradiation measurement

FOCI module DC biased no signal input, VCSEL online monitored for mid-level DC light

- VCSEL light degradation
- Optical IC function


NIEL damage to VCSEL, Optical IC

VCSEL degradation

- VO510 DC biased, (1.5 V to TX driver)
- Annealing during irradiation
- Linear loss to fluence
- → VECEL degraded to 80% of the original after 1x10¹⁴ p(30 MeV)/cm² consistent with bare VCSEL tests

Single Event effect to Optical IC

- Single Event Effect = 3x10⁻³ Hz
 @Beam flux = 3.5x10⁹ /cm²s to controller circuits, observed by VCSEL DC light level hopping
- Fatal damage to Optical IC after 1.2x10¹⁴ p(30 MeV)/cm²

- Light Peak design on light coupling
 → compactness, flexibility in packaging
 → choice of die, chip etc
- Optical IC of latest CMOS technology
 radiation hardness to be confirmed
- New versions of FOCI modules dual TX/RX and new 10 Gb/s driver IC radiation hardness to be investigated