Commissioning of the Read-Out Driver (ROD) card for the ATLAS IBL detector and upgrade studies for the Pixel Layers 1 and 2

G. Balbi, M. Bindi, D. Falchieri, A. Gabrielli, L. Lama, R. Travaglini (INFN and Physics and Astronomy Department, University of Bologna, Italy)
S.-P. Chen, S.-C. Hsu, S. Hauck (University of Washington, Seattle, USA) on behalf of the ATLAS collaboration

9th International "Hiroshima" Symposium on the Development and Application of Semiconductor Tracking Detectors, Hiroshima, Japan

A. Gabrielli HSTD-9 1-5 Sep. 2013 Hiroshima Japan

Outline

- ROD card status
- Pixel ROD vs IBL ROD
- Ongoing ROD tests
- Plans for IBL ROD production
- Proposals for outer layers of Pixel Detector

Basics

- IBL ROD started from pixel ROD
- VME 9U backward compatible card
 - Some ways to also connect IBL ROD to pixel BOC
- IBL ROD extends modularity by a factor of 4
 - 32 FEI4 chips, 4 SLinks
- IBL ROD FW started from "Berkeley FW"
 - Only calibration fits have moved to external PCs (two Gb/s Ethernet ports)
- All other ROD pixel functions are only being adapted to the new ROD
- Extra features were added
 - Possibility to work Off-crate
 - USB port on the front panel
 - Third Gb/s-Ethernet port to upload microblaze SW or data for testing aims
 - Possibility to exclude the VME and control everything under Gb/s-Ethernet

Read-out System Overview

Number of IBL Staves /ROD-BOC pair	14						
# DAQ Modules per ROD-BOC pair	16						
# FE-I4s chip per ROD-BOC pair	32						
Total # of FE-I4s in IBL	448 (32*14)						
Number of Pixels per FE-I4	26880						
Total # of read-out channels	~12 M						
ATLAS TDAQ 5.12 Gb/s 5.12 Gb/s 5.12 Gb/s 5.12 Gb/s 5.12 Gb/s 5.12 Gb/s 5.12 Gb/s 5.12 Gb/s 5.12 Gb/s 5.12 Gb/s 5.11k 1 (data processing) 5.11k 2 (data processing) 5.11k 2 (data processing) 5.11k 3 (data processing) 5.11k 4 (data processing) 5.11k 4 5.11k	Spartan 6 (data processing) Histo SSRAM (data processing) Histo SSRAM Histo SSRAM						
3 1 IBL 1 IBL	Virtex 5 (ROD controller) PowerPC PPC DDR2 ROD E						
A. Gabrielli HSTD-9 1-5 Sep. 2013 Hiroshima Japan							
• • • • • • • • • • • • • • • • •							

IBL Readout Driver

ROD RevC

- Control card
 - Steering of detector
 - Configuration
 - Commands
 - Detector calibration by steering the calibration scans
 - Physics data taking
 - Trigger sending, event building
 - Histogramming for calibration and monitoring

Master FPGA:

- Control data generation
- Run control (calibration scans and data taking)

• Slave FPGAs:

- Data interface to and from Back of Crate Card
- Data formatting and event-fragment building, histogramming

Some pictures

BOC-ROD off-crate test

System test in the Pixel-Lab

BOC-ROD on-crate test A. Gabrielli HSTD-9 1-5 Sep. 2013 Hiroshima Japan

Firmware wrt "old pixel ROD"

Power PC-based system: HW-SW

The MDSP C-code of the "old pixel ROD" has been integrated into the Virtex5 PowerPC o and simulated together with the VHDL code T

ROD

#7

Firmware wrt "old pixel ROD"

ROD

#8

BOC/ROD Firmware overview

FW for the Histogrammer tests

Ongoing ROD tests

Besides all the previous BOC-ROD tests some new HW tests are ongoing

• **FEI4B-ROD** communication: digital scan test with pixel mask

Operation with the TIM

TIM – BOC - ROD communication seems ok!

•The TIM board, (TIM 2C) is the same as the one in Bologna, however with different firmware version.

•LV1_ID are correctly incremented and received from the ROD. No error seen, no fluctuation of LV1_ID has been detected so far.

•Changing the frequency of the trigger we see a coherent change in Chipscope signals.

•TT also checked.

Г	Bus/Signal	x	0	0 160 	320 4	480 640	008 (96 	0 112	0 128	0 1440	1600	1760
-	TIM_L1ID	127D2 ⁻	127D21	127D21	127D22					X127D23			
-	TIM_BC_ID	B9E	B9E	B9E	<u> </u>			C66	1			D2F	
┝	valid_IDS	0	0	1	1	, I	I	I	1	Ĺ	1	I	
-	TIM_TYPE	3AA	3AA	3AA									1
	valid_TT	0	0	1		1	I	I	1		I	I	1
	-					- 1							

IBL ROD (rev C) Bologna 14-layer card

14 Required + spares for IBL

5 Already test-card produced15 under production

Rev C under test in Bologna and at CERN

- no issues so far
- firmware under development by the pixel collaboration
- tests with BOC rev B

Ongoing ROD tests

Besides all the previous BOC-ROD tests some new HW tests are ongoing

ROD firmware upload

- configuration via VME, through *Program-Reset-Manager* **OK**
- FW and SW for embedded processors via VME

BOC-2-ROD

 clock-phase, I/O terminations
 Predefined pattern sent to ROD, cross-checked with memory block on Spartan6, tested with Chipscope
 Cross-check of SSTL3_I signals received from BOC with and w/o terminations (revB vs revC) clock phase spectrum enhanced with terminations Acceptance window widens

OK

Ongoing ROD tests

Besides all the previous BOC-ROD tests some new HW tests are ongoing

TIM-2-ROD communication

- Serial streams from TIM to ROD have been tested **OK**
- LV1ID counter, Bunch Crossing ID (BCID) and Trigger Type (TT) **OK**

ROD Internal Bus and RAM checks

• PowerPC program fills a RAM block on Virtex5, then data sent to Spartan6, cross-checked with Chipscope, **OK**

Communication towards histograms

• Spartan6-External SSRAM <u>on-ROD communication</u> OK at 100 MHz

ROD IBL production and testing procedures

IBL ROD production

- List of minimal procedures to validate the ROD cards after production
 - Firmware-software upload from VME, JTAG and Gb/s-Ethernet ports
 - ROD-2-BOC dataflow over all I/O lines
 - R/W tests for Virtex5 and Spartan6 external memory modules
 - Dataflow tests on the 3 Gb/s ports
 - TIM card connectivity test
- Test committed-delegated to the ROD manufacturing company This is the same we asked for ROD ver B and C cards
 - Electrical test after component supply
 - XRay test for large BGA-packaged components
 - 15 RevC IBL ROD board production started on August 26th 2013
 - Boards are expected on the first week of October
 - Distribution to CERN might start at the end of October

Plan for ROD of Layer 2

NEEDS:

26 Boards + spares, same numbers as current Pixel Detector Still use of IBL boards for ATLAS Pixel Layer 2

Options for ATLAS Layer2 ROD production

- A everything from the beginning to the end: like for IBL
- **B** board production, assembly, tests and firmware support components provided via CERN (even partially)
- C components, board production and tests done via third party Bologna provides firmware support only

ISSUE: Time schedule of Layer 2 overlaps IBL schedule

Plan for ROD of Layer 1

NEEDS:

38 Boards + spares, same numbers as current Pixel Detector

Too early for a reasonable schedule for Layer 1 but it seems reasonable use IBL boards for Layer1

Options:

- Buy the components for the boards along with those for Layer 2
- Wait after IBL and Layer 2 will be mounted

Conclusion

Big effort from where we started from for ...

- ROD design, production, tuning of the cards
- Mechanics, Heat-Sink for Virtex5, board rigidity
- Firmware test
- Firmware development and support
- From 2009, 12 ROD boards have been produced starting from scratch:
 - 2 were the very first prototypes,
 - the other 10 (5+5) are in hands and working
- IBL ROD production is ongoing

We can propose to repeat the same roadmap for Layer2

Whatever needed for **Layer 1** will be probably postponed after IBL and Layer 2 commissioning; only components might be bought earlier