Hardware and Firmware developments for the upgrade of the ATLAS Level-1 Central Trigger Processor

TWEPP 2013, Perugia, 25. September

System overview:
- Trigger/DAQ System Architecture
- Level-1 Trigger: current system
- CTP Architecture
- CTP: Upgrade motivations

Central Trigger Processor Core+ (CTPCORE+)
- Demonstrator
 - Hardware Tests – Proof of Concept
 - Firmware Design
- CTPCORE+ Hardware
 - Board Design
 - Status

Summary and Outlook
Trigger/DAQ System Architecture

Level-1 Trigger (LVL1):
- Custom electronics, FPGAs

Level-2 Trigger (LVL2), Event Filter (EF):
- COTS computers, networks & custom software

Front-end Electronics:
- Custom, rad-hard ASICs

Pipeline Memories

Level-1 Accept (L1A)

Derandomizers

Readout Drivers (RODS)

Readout Buffers (ROBS)

Event Builder

Full-event buffers and Processor sub-farms

Data Recording

20 MHz

75 kHz

~5 kHz

~600 Hz

Event Filter

Level-2 Trigger (2.5 us)
Level-1 Trigger: Post-LS1 System

- Uses reduced granularity information from calorimeter and muon trigger detectors
- Trigger decision based on object multiplicities at different thresholds
- Synchronous, pipelined processing system operating at the bunch crossing (BC) rate of 40 MHz
- Generates Level-1 Accept (L1A) and sends it via Timing, Trigger and Control (TTC) distribution to detector front-ends to initiate readout
- Identifies regions-of-interest (RoI) to seed the Level-2 (LVL2) Trigger
- Maximum round-trip latency: 2.5 us
 - Data stored in on-detector pipelines
- Maximum trigger rate: 100 kHz
- Custom built electronics (FPGAs)
CTP Architecture

Composed of 9U VME boards:

- **CTPMI - Machine interface**
 - Receive timing signals from LHC

- **CTPIN - Input module**
 - Receive trigger input signals
 - Synchronize and align signals

- **CTPMON - Monitoring module**
 - Bunch-per-bunch monitoring

- **CTPCORE - Core module**
 - Form Level-1 Accept (L1A)
 - Send summary information to LVL2 & DAQ

- **CTPOUT - Output module**
 - Send trigger to detector FE via the TTC system
 - Receive calibration requests

- **CTP Backplane**
 - Common (timing), trigger inputs and calibration requests
CTP: Upgrade motivations

• Primary motivation
 – Increase the number of trigger inputs:
 – PIT: 160 -> 320
 – Topological processor (L1Topo) signals: 0 -> 192
 – Increase the number of trigger items (combinations): 256 -> 512

• Additional features
 – Partitioning of L1A generation for detector commissioning
 – 1 primary partition + 2 secondary for concurrent running
 – Option to connect trigger inputs through optical links (2018)

• Requires complete redesign of CTPCORE (=> CTPCORE+), CTPOUT (CTPOUT+) modules and COM backplane
System overview:

- Trigger/DAQ System Architecture
- Level-1 Trigger: current system
- CTP Architecture
- CTP: Upgrade motivations

Central Trigger Processor Core+ (CTPCORE+)

- CTPCORE+ Hardware
 - Trigger Path FPGA
 - Readout & Monitoring FPGA
 - Status
 - Demonstrator
 - Hardware Tests – Proof of Concept
 - Firmware Design

Summary and Outlook
CTPCORE+ - Hardware

- **GPS time (CTRP)**
- **Monitoring PC**
- **DAQ S-LINK**
- **LVL2 S-LINK**
- **Spare SFPs**
- **Optical Outputs (loopback tests)**
- **96 Electrical Inputs (LVDS) from L1Topo**
- **Optical Trigger Inputs for Phase-1**

Readout/Monitoring FPGA (XC7VX485T)
- **VME I/F (XC6SLX45)**
- **1GbE PHY**
- **SFP**
- **Mini POD Tx**
- **Mini POD Rx**
- **PIT, ITM, TAP, TAV (16 x 6.4 Gbd)**
- **12 x 6.4 Gbd**
- **3 x 32 bit @ 40/80 MHz**
- **12 x 6.4 Gbd**
- **BC, ORB, ECR, 3 x BSY L1Ap**
- **2 x L1As**
- **RAM1**
- **RAM2**
- **RAM**
- **VMEbus**
- **Trigger & Timing Signals (COM Backplane)**
- **PIT Bus Backplane 160 bit @ 80 MHz (DDR)**

Marco Ghibaudi, 25. September 2013
New CTPCORE+ module has been designed, in production
Trigger Path FPGA

- Virtex-7 FPGAs (XC7VX485T, BGA1157)
 - 300k LUTs (6-input), 600k flip-flops, 1030 RAM blocks (36 kbit)
 - 600 I/O pins, 20 multi-gigabit transceivers (MGTs)
- Trigger path implemented in one FPGA to minimize latency
- Trigger input signals
 - 160 PIT bus lines at 80 MHz (320 triggers at 40MHz)
 - 96 LVDS inputs for low-latency connection to L1Topo from the front panel (DDR)
 - Option to connect trigger inputs through 12 serial optical links
- Functions:
 - Generates L1A signal and associated trigger type for three trigger partitions
 - Receives busy signals for each partition from COM+ backplane to veto triggers
 - Sends full information about trigger decision to readout & monitoring FPGA (>2300 bit/BC > 90 Gbit/s)
 - Playback and diagnostics memory (DDR3 SODIMM memory)
Readout & Monitoring FPGA

- Same type as trigger path FPGA (XC7VX485T)
- Implements non-latency critical functionality
- Receives detailed information from trigger path FPGA via 16 serial links running at 6.4 Gbps
- Readout functionality
 - Send trigger summary information for the primary partition to LVL2 and DAQ via S-LINK for every L1A
 - Add precise timestamp to each event (GPS reference)
- Monitoring functionality
 - 2048 integrating counters for trigger rate monitoring
 - 256 per-bunch monitoring counters
 - Histogram of selected trigger bit versus BCID
 - Requires ~50% of the on-chip block RAM resources
 - Event monitoring
 - Optional GbE communication path to overcome VME bandwidth limitation
System overview:
- Trigger/DAQ System Architecture
- Level-1 Trigger: current system
- CTP Architecture
- CTP: Upgrade motivations

Central Trigger Processor Core+ (CTPCORE+)
- CTPCORE+ Hardware
 - Trigger Path FPGA
 - Readout & Monitoring FPGA
 - Status

Demonstrator
- Hardware Tests – Proof of Concept
 - Chip-to-chip communication test
 - Power Consumption
 - Firmware Design

Summary and Conclusion
Demonstrator

- Based on 2 commercial Xilinx evaluation boards (VC707)
 - Same Virtex7 FPGAs (XC7VX485T) as used on CTPCORE+ board, different package
 - 2 FMC connectors exporting 16 MGTs
 - Ethernet Interface
 - 1GB DDR3 Ram Memory

- Used for:
 - Hardware proof-of-concept
 - Firmware prototyping without waiting for CTPCORE+ board

- Examples of tests conducted
 - Chip to chip connectivity test
 - Power consumption measurements
 - Validation of F/W modules
Chip-to-Chip communication

- On CTPCORE+ board, FPGA Trigger and FPGA Readout are connected through 16 MGTs (diff. pairs, fast links). Chip-to-chip connections on PCB traces, target speed 6.4Gbps.

 - To estimate the BER, we set up a test environment
 - The same type of test can be done on CTPCORE+ board

Results of long-run test:
~ 6 hours -> 0 Errors.
Power consumption

- Both VC707 and CTPCORE+ boards use DC/DC controllers with PMBus interface
- PMBus is an open-standard power-management protocol, similar to I2C. It can be used for:
 - Configuring and monitoring power supply unit parameters (voltage and current in/out levels).
- For crosschecking vendors power consumption estimation tools results. In our case for checking the values generated by Xilinx Power Estimation (XPE) tool.

Advanced configuration capabilities: E.g. Rail 1 has a 1.75 V output and it’s powered off 10 ms before Rail 4.

Result: XPE predictions are coherent with measurements
System overview:
- Trigger/DAQ System Architecture
- Level-1 Trigger: current system
- CTP Architecture
- CTP: Upgrade motivations

Central Trigger Processor Core+ (CTPCORE+)
- CTPCORE+ Hardware
 - Trigger Path FPGA
 - Readout & Monitoring FPGA
 - Status
- **Demonstrator**
 - Hardware Tests – Proof of Concept
 - Chip-to-chip communication test
 - Power Consumption
- **Firmware Design**
 - New components

Summary and Outlook
DDDR3 Memory

- DDR3 Memory Controller for monitoring trigger information and running playback tests
 - Modified Xilinx IPCore for DDR3 memory controller (clocking scheme etc.)

- Tested at 1.6Gbps (bandwidth ~100 Gbps)

- Use of memory:
 - Snapshot memory
 - Playback memory

- Scheduling of the memory accesses for handling different types of requests
 - Store trigger information in the memory (snapshot memory)
 - Load and store test patterns (playback memory)
 - Programming and retrieval of memory content through VME/Ipbus
Control and Monitoring Interface

- Ethernet based control protocol
 - Control and monitoring achieved through Ipbus
 - IPbus provides a mechanism to access FPGA registers through Ethernet/UDP. Used by CMS
 - Used in the Demonstrator to emulate VME (no VME bus on VC707). It will be replaced by VME on CTPCORE+
 - Adaptation of IPbus 1.4 firmware to work with Virtex7 FPGA architecture
 - Supports standard operations (Read, Read Burst, Write, Write Burst)
 - Developed model (MAC-layer emulated, full IPbus stack) to speed up simulation
Chip to Chip communication protocol – 1/2

• Extended the Xilinx Aurora 64b66b proprietary protocol for implementing multiple channels (each channel 4 MGTs)

• Configurable baud-rate (6.4 Gbps, 8Gbps, 10Gbps)
Chip to Chip communication protocol – 2/2

- Designed glue logic for overcoming internal clocking limitations of Xilinx MGTs;
 - Scalable multiple channels architecture
 - Same design can be used on CTPCORE+
 - Based on packet dispatching and sequence restoring for in-order reception

<table>
<thead>
<tr>
<th>System</th>
<th>Num. MGTs</th>
<th>MGT Baudrate</th>
<th>Throughput (64b66b coding)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrator</td>
<td>3*4</td>
<td>10 Gbps</td>
<td>116 Gbps</td>
</tr>
<tr>
<td>CTPCORE+</td>
<td>4*4</td>
<td>6.4 Gbps</td>
<td>99.3 Gbps</td>
</tr>
</tbody>
</table>

Diagram: BC Data Generator or Triggering Logic → Packet Dispatcher (RR) → FIFO Tx Ch.0, FIFO Tx Ch.1, FIFO Tx Ch.2, FIFO Tx Ch.3 → Packet Sequence Recomposer → FIFO Rx Ch.0, FIFO Rx Ch.1, FIFO Rx Ch.2, FIFO Rx Ch.3
Firmware validation

- Integration of the newly developed firmware modules in a system that mimics CTPCORE+ configuration
- IPbus is used for controlling the configuration and monitoring demonstrator system
- Concurrent memory accesses supported during playback test
- Domain crossing needs to be carefully handled
 - IPBus (32.5 Mhz), Ethernet (125Mhz), Core Logic (40MHz), MGTs (160 MHz)

Datapaths

- Config. via IPbus
- Internal data storage
- Playback mode
- RAM access IPbus
- RAM access MGT
- MGT to MGT

![Datapath Diagram](image)
Summary and outlook

• Summary
 - CTPCORE+ board designed. First prototypes in production, PCB delayed
 - Firmware for DDR3 Memory, Ethernet + IPbus and MGTs new hardware components:
 - Designed and tested on the demonstrator
 - Easy to integrate on CTPCORE+

• Outlook
 - CTPCORE+ board testing, system integration
 - Port existing firmware on the new architecture, integrating it with new components
 - Extend software to support new features of CTPCORE+
 - Commissioning in ATLAS in 2014
Questions?