

# A Fast UV-LED QRdriver for Calibration system for SiPM based scintillator HCAL Detector



Ivo Polák and Jiří Kvasnička on behalf of the CALICE Collaboration

FZÚ - Institute of Physics of the ASCR, Na Slovance 2, CZ - 18221 Prague 8, Czech Republic, e-mail: polaki@fzu.cz



## **EXPERIMENT CALICE**



Prototype of calorimeters tested at accelerators of CERN and FERMILAB

- Si-W electromagnetic calorimeter (ECAL)
- Scintillator tile hadronic calorimeter (HCAL)
- muon tail-catcher (TCMT)

Our Prague group has responsibility for flashing calibration system for HCAL



# 1 m<sup>3</sup> SCINTILLATOR CALORIMETER HCAL

- 2005 till 2010, then as WHCAL at CERN
- •38 layers, 2 cm Fe absorbers + 5mm scintillator tiles
- •7608 photo detectors SiPM
- •A layer 216 scintillator tiles, 3x3, 6x6, 12x12 cm³, 5mm thick Calibration system with 12 LEDs monitored by PIN-Photo Diodes
- Optical flash is distributed by fiber bundle to each scintillator
- •5 temperature sensors per layer integrated circuits LM35



One scintillator tile consists:

- •WLS fibre (~380nm to ~500nm)
- SiPM photodetector



### Photodetector:

- silicon photomultiplier SiPM
- •1156 pixels, each works in the Geiger mode
- •Gain of SiPM ~10<sup>5</sup> to 10<sup>6</sup>



# Calibration procedure

Physical: cosmics or beam muons

LED: flashes with small amplitude

> LED flashes generate a clear single p. e. spectra

Gain is proportional to the distance between peaks

Gain is independent on the number of photons

We can compensate dG/dT of SiPM by adaptive voltage regulator to get dG/dT < 1% in range 15 to 35°C

Non-linear or saturation curve of SiPM

Offline, we correct for the nonlinearity of SiPM

# Quasi-Resonant LED driver



Block scheme of QMB1



Modular system, 1 LED per board

Operation mode:

- •LVDS Trigger distribution system
- Trigger rate up to 300kHz
- Excelent amplitude stability, mostly
- Variable amplitude, zero to maximum
- Voltages and temperature monitoring
- Single power 15V/65mA

### Quasi resonant Main Board QMB1



- •Low jitter (<250ps),
- degraded by LED
- (~1Amp)smooth wave •Pulse width fixed to ~ 5ns (UV or blue LED) or versions 1.6ns and 30ns
- •Size of PCB: width 30mm, depth 140mm

# Linearity of QMB1





Upper: PIN-PD w preamp 10ns/div

Maximal LED amplitude, LED airgap to PIN-PhotoDiode.





In 2013 we are developing 3 versions of QMB1 with 1.6 ns, 3.5 ns and long pulse 30 ns. Long pulse version is coming with external toroidal inductor.

# A frame with five QMB1 boards





## 6x QMB1A

- QMB1A is upgrade to QMB1 fixing bugs and better layout at LED driver with respect to RF roules
- PCBs after assembly in the frame
- Red connectors are for Trigger LVDS distribution
- PWR - CANbus
- Tested on main parameters and

firmware implemented.

Time [hh:mm:ss]

★Norm Temp - Magnet ★ APD 1 → APD 2 ▼ PIN

## Middle notch End notch First notch 3mm UV-LED light output profile Fibre triplet homogeneity 5 and 3mm UV-LED wavelength spectrum

HBU3

-x fibre #36, manufacturer

HBU5

2322212019181716151413121110 9 8 7 6 5 4 3 2 1 0

HBU1

- Light is emitted from the notches Aim: 12 or 24 notches per fiber with light output spread
- The notch is a special scratch to the fiber, which reflects the light to the opposite direction
- The size of the notch varies from the beginning to the end of the fiber to maintain homogeneity of the light output across the notches



Bundles of 3 fibers = triplet



magnetic wooden paddle, to be moved

in/out of solenoid bore.