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1. Motivation

 LHC upgrade program aims at 5-10 fold luminosity increase
→ more radiation → better radiation tolerance required

 Aging electronics → originally planned for 10 years of operation
 Higher event rates require more efficient trigger algorithms

Complete redesign of TileCal electronics for upgrade in 2022

● Currently digitized data stored on the detector
→ Readout only for triggered events

 Redesigned electronics should transfer all digitized data off
the detector
→ Fully digital Trigger with higher selectivity and finer granularity    

possible

Implementing the new concept in a Demonstrator in 2014
→ Discover and solve issues as early as possible
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2. The ATLAS Tile Calorimeter

4/23

Source: ATLAS



24/09/2013   
             

S. Muschter, H. Aakerstedt, C. Bohm  (Stockholm University)
K. Anderson, M. Oreglia, F. Tang (University of Chicago)

2. The ATLAS Tile Calorimeter

 The Tile Calorimeter (TileCal) is a hadron calorimeter
 Measures the energy and direction of hadrons and jets
 Divided in 64 wedges in azimuth
 Consists of steel plates with scintillator material in between
 Front-end electronics and PMTs located in “drawers” along the

outer surface
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 Key component for the 
first-level trigger

 Analog trigger sum formed 
on-detector (Σ)
→ organized as tower sums

 16 bit resolution read out 
achieved by two gain ranges

 Digitized data stored on-detector 
in pipeline and de-randomizer 
memories

2. The ATLAS Tile Calorimeter
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3. The present system

 3-in-1 Front-end boards:
• Shaping of PMT signals for digitization with LHC clock
• Integration of PMT signals and production of Charge injection pulses for 

calibration

 3-in-1 mainboard:
• Programming and control of the 3-in-1 board

 Digitizer board:
• Digitization into pipeline and de-randomizer memories

 Interface board:
• Timing Trigger and Control (TTC), fan-out and readout merging links to 

off-detector area (USA-15)
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4. The future system

 Readout of all data to the upgraded Read Out Driver (sROD)
 Pipeline and de-randomizers in USA-15
 High speed serial data communication with up to 11.25 Gbps
 New modularity → MiniDrawers
 Local voltage regulation, error monitoring and DCS integration
 Remote programmability and configuration of all on-detector boards
 Three different alternative FEBs under development

• 3-in-1 (University of Chicago)
• QIE (Argonne National Laboratory)
• FATALIC Front-end ASIC (Clermont-Ferrand)
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5. The Demonstrator readout
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 As close as possible to a final system but
• Capable of receiving commands from the TTC data-stream 

decoded by the sROD
• Compatible with the current DCS system
• Compatible with the current test procedures
• Transmitting standard output data to a standard ROD via 

sROD

 Overall compatible with the present system
• Analog tower summation for present Trigger
• Only possible with 3-in-1 FEB
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 Redesigned 3-in-1 Front-end boards:
• Shaping of PMT signals for digitization with LHC clock
• Integration of PMT signals and production of Charge injection 

pulses for calibration

● Mainboard:
• Programming and control of the 3-in-1 board
• Digitization of PMT signals

 DaughterBoard:
• Monitoring and controlling of the front-end electronics
• LHC clock recovery and distribution
• Data transmission to and from off-detector electronics
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5.1. 3-in-1 front-end board

 Front-End-Board (3-in-1):
• Only analog components for 

integration and shaping used
• Digital components moved to the 

MainBoard
• Improved noise performance
• Improved linearity
• Shortened shaping time
• Passed radiation testing
• Final iteration manufactured
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 Connected to MainBoard (through 40 pin connector):
• 5 pairs of LVDS signals for integrator gain/calibration controls
• 2 pairs of LVDS signals for charge injection

– High and low gain independently
• 3 pairs of LVDS signals for setting the calibration DAC
• One pair of analog integrator output signals
• +5V, -5V, ground

 Connected through 3 cables:
• 2 pairs of high/low gain

fast PMT signals
→ MainBoard

• 1 differential pair of signals for
analog trigger
→ summing board
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5.2. MainBoard

 MainBoard:
• Dimensions: 690mm x 100mm (over-sized board)
• 14 layers in total including 3 power planes
• Two completely independent sides

(including power supply network)
• Connected to twelve 3-in-1 cards (6 on every side)
• Four FPGAs for clock distribution and 3-in-1 control
• Local regulated voltages: +5V, -5V, +2,5V, +1,8V, +1,2V
• LVDS communication with DaughterBoard at 560Mbps over up 

to 50cm long traces
• Voltage monitoring capability
• Signal lines simulated thoroughly up to 800Mbps
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 MainBoard – logical partition:
• 4 times:

– 1 Cyclone IV FPGA from Altera
– 6 ADC for pulse sampling
– 3 ADC for integration
– 12 DAC for pedestal correction
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 MainBoard PMT readout data flow

15/23

5.2. MainBoard



24/09/2013   
             

S. Muschter, H. Aakerstedt, C. Bohm  (Stockholm University)
K. Anderson, M. Oreglia, F. Tang (University of Chicago)

 Connected to DaughterBoard (through 400 pin connector):
• Dedicated serial buses to read out digitizing ADCs
• 4 groups of SPI buses one for each MainBoard FPGA
• 2 groups of LVDS charge injection signals
• 4 groups of CMOS I2C buses for integrator ADC readout
• 2 groups of JTAG signals
• 6 single-end LV signals

(0V to 1V) for low voltage
monitoring

• LVPS supply voltage
(+10V) and ground
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 Current DaughterBoard revision:
• Two completely independent sides with
• Independent power supply
• Two Kintex7 FPGAs
• High speed serial communication up to 11.25Gbps
• Filtered supply voltages for better jitter performance
• Additional clock circuitry for jitter cleaning
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• Current DaughterBoard revision – logical partition:

• There will be no SNAP12 connector on the next revision 
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• Final DaughterBoard revision – High-speed communication:
● Either 4.8 Gbps or 10 Gbps, depending on direction

• Redundantly connected QSFP+ modules
• Two GBTx for FPGA independent data reception 
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• DaughterBoard electrical characterization:
● High quality clock signals available on the board
● Either through the IC mounted on the board (CDCE62005)
● Or through synthesis within the Kintex7

(better jitter performance due to filtered supply voltages)
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CDCE62005 output signal synthesized from 100 MHz input
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• DaughterBoard electrical characterization:
● Wide open eye when measuring electrical 

performance of the Kintex7 gigabit transceivers (GTX)
● FPGA utilization measurements performed to evaluate 

impact on GTX performance
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6. Test setup

• Example test setup at the University of Chicago for 
implementing a complete communication chain using: 

– XILINX development board KC705 serves as
sROD emulator

– IPBUS or PCIe will be used for data transmission
to a control PC
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7. Conclusion

• Current status:
● Firmware development for DaughterBoard, MainBoard 

and sROD emulator is ongoing
● Layout of next revision DaughterBoard is in progress 

and will be finished soon
● Radiation tests of 3-in-1 FEB were successfully 

performed
● Radiation tests of MainBoard and DaugherBoard are 

planned and test designs are in development

● Outlook:
● Radiation tests in October
● Fully working Demonstrator by the end of the Year
● Installation of the Demonstrator in the middle of 2014  
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