



## **Single Event Upsets in ATLAS SCT**

### Alex Dafinca, Jim Henderson & <u>Tony Weidberg</u> (on behalf of the ATLAS SCT Collaboration)

### Topical Workshop on Electronics for Particle Physics Perugia, 26<sup>th</sup> September 2013

## **Single Event Upsets in ATLAS SCT**

- Single Event Upsets (SEU) studied for ATLAS & CMS in test beams but this is first reported study of SEU in ASICs in LHC operation.
- Expectations for (SEU) from test beam data.
- SEU in SCT operation and comparisons with test beam
  - *p-i-n* diodes in TTC link.
  - DAC theshold registers in FE ASIC: ABCD.
- Mitigation for ATLAS operation.
- Mitigation strategy for SEUs at HL-LHC.

## SEUs in SCT, how and where?

- Particles deposit sufficient charge in small region of silicon → bit error (SEU)
  - Typically needs nuclear interaction to deposit sufficient energy, i.e. MIPs are harmless.
- In *p-i-n* diode that receives optical TTC signal
  - − Single bit error → loss of synchronisation of a FE module.
- In static registers in ABCD
  - Don't care about dynamic memory (pipeline) but static registers will stay wrong after an SEU until reset.
  - Look at effects in DAC threshold register.

### **SEU Studies**

- Measure SEU rates for prototype in test beams:
  - Low energy  $\pi$ /p beams (mainly 200 500 MeV/c)
  - Extrapolate to LHC spectrum?
  - No synchronisation with beam bunches.
  - Angle of incidence.
- Measure actual SEU rates in ATLAS operation and compare with test beam based predictions.

Results shown for barrel SCT only.

## **SEU In SCT Optical Links**

- On-detector *p-i-n* diode is Sensitive to SEU
  - Small electrical signal before amplifier stage.



- Measure BER with loopback
  - With beam
  - Without beam
  - Difference → SEU



## SEU in *p-i-n* diode – Test Beam

- Measured SEU vs current in *p-i-n* diode I<sub>PIN</sub> (simple loopback test) .
  - No errors with beam off.
  - No errors for MIPs.
  - Measured Bit Error Rate vs
    I<sub>PIN</sub> with beam on.
  - ac coupled → charge required to cause bit flip is proportional to I<sub>PIN</sub>.
- $\sigma$  higher for 300 MeV/c  $\pi$ because of  $\Delta$  resonance  $\rightarrow$  large variation of  $\sigma$  with energy  $\rightarrow$ difficult to predict rates for LHC operation.



#### **σ(SEU)=# bit errors/fluence**

J.D. Dowell et al., Single event upset studies with the optical links of the ATLAS semiconductor tracker, Nucl. Instr. Meth. A 481 (2002) 575.

## SEU in ATLAS Operation (1)

- *p-i-n* diode receives optical TTC signal.
- Indirect measurement BER
- Signature for SEU in *p-i-n* diode is loss of synchronisation for L1A trigger:
  - TTC sends
    - full L1A number to ROD: L1A(full)
    - L1A signal to detector FE via optical links.
  - On-detector 4 bit counter counts L1A and returns 4 LSBs in data stream: L1A(4)
  - − SEU causes  $0 \rightarrow 1$  can cause loss of L1A on-detector.
  - Compare L1A(full) with L1A(4). Persistent discrepancy is SEU.
- No errors seen in "physics mode" running with no beam
  suspect that these errors during beam are due to SEU.

## SEU in ATLAS Operation (2)

- L1A signal is 110
- Short code vulnerable to single bit error (minimize latency).
- Assume 0→1 transitions more probable than 1→0 because of high value of I<sub>PIN</sub>.
- In ATLAS energy deposition synchronised to bunch crossing, unlike test beam
- Creates large uncertainties in extrapolating test beam cross section to ATLAS operation.

## Are errors really SEU (1) ?

- SEU rate should scale with module occupancy (proxy for particle flux).
- Occupancy changes from luminosity variations and decreases as radius of barrels increase
- Shows expected linear behaviour



## Are errors really SEU (2) ?

- SEUs should be biased towards modules with low vales of IPIN
- Compare:
  - All modules
  - Weighted by SEU
  - Model prediction
    based on
    exponential fit to
    test beam σ(SEU).



## **Angular Dependence?**

- Normalise SEU rate by cluster occupancy (flux).
- Look at normalised rates vs incident angle in 4 barrel layers.
- No significant effect.
- Possible explanation:
  - High Ipin → large energy threshold for SEU → rate volume of active region (*p-i-n* diode is a microcalorimeter).



## Absolute Rates (1)

#### Many uncertainties

- Fit to σ(SEU) vs I<sub>PIN</sub> (ignore data at 300 MeV/c)
- Don't know how to make extrapolation to ATLAS particle spectra → large uncertainty
- Different beam conditions
  - ATLAS r/o synchronised to bunch crossings
  - Test beam asynchronous



## Absolute Rates (2)

#### • Naïve prediction:

- N(SEU) =  $\sigma$ (SEU) \* Fluence
- Ignore variation in  $\sigma$ (SEU) with LHC spectrum.
- Corrected for variation of  $\sigma$ (SEU) with I<sub>PIN</sub>.
- Fluence: use <module occupancy>
- Reject long SEU bursts (>60s) 13% uncertainty
- Reject modules with multiple errors in one run: 5 to 6% bias.
- Number SEU in data set
  - Luminosity 7.81 fb<sup>-1</sup>
  - Measured: 2504
  - Predicted : 1949
  - Good agreement within large uncertainties.

## **SEU in ABCD DAC registers**

- Test beam studies:
  - PSI 200 MeV/c  $\pi^+$  angle of incidence 79°.
- No simple read/write test for registers in ABCD.
  - Indirect determination using mask register at o/p of pipeline.
  - Assume SEU rate in mask register same as DAC.
  - Measured 0 →1 errors but expect cross section for 1→0 to be larger (according to ABCD chip designer).
- Fluence/SEU = 3.7  $10^{13} \pi/cm^2/SEU$

– Some batch to batch variations

• L. Eklund et al., SEU rate estimates for the ATLAS/SCT front-end ASIC, Nucl. Instr. Meth. A 515 (2003) 415.

## **SEU in ATLAS Operation**

- Indirect measure SEU.
- SEU in DAC threshold register change discriminator threshold for that ABCD:
  - $-(1) \rightarrow 0$  bit flip  $\rightarrow$  increase in chip occupancy
  - (2) 0→1 bit flip → decrease in chip occupancy
  - In practice only sensitive to the 5<sup>th</sup> bit.
- Easier to look for effect (1) than (2).
- Effect should persist until module reset
  - Look for chips with persistently high occupancy.

# **Chip Occupancy**

Occurances

- 128 strips/chip
- Average over 10 events
- Mean occupancy very low as expected.
- Spike at 128 
   every strip fires every event
- Also see rarer spikes from when all strips fire in 9 or 8 events (start or end of burst)



Number of strips occupied per chip

Note compressed log scale on y-axis Vary threshold to identify start of burst but lower fixed threshold at 50 for end of burst.

### **Are Errors Real SEU?**

- Plot SEU rate vs chip occupancy per event (proxy for particle flux)
- See expected linear slope.



## **Angular Dependence**

- Measure SEU/cluster occupancy vs incidence angle for barrel layers.
- See increase in rate with angle.
- Linear fit to compare PSI data at 79° with ATLAS data.



## **Absolute Predictions (1)**

- Measure SEU rates as a function of threshold in number of hits/chip used to identify SEU bursts.
- Use fit to extrapolate to 0 threshold
   measured # SEU.
  - 3% uncertainty from extrapolation.



## **Absolute Predictions (2)**

- Don't know how to scale σ(SEU) for π at 200 MeV/c to LHC spectrum → large uncertainty
- Naïve model:
  - N(SEU) =  $\sigma$ (SEU) \* Fluence
  - Fluence: FLUKA simulations scaled to luminosity
  - Results for inner barrel layer scaled to other layers using measured chip occupancies.
  - Corrected for angular dependence observed in data.
- # SEU in 23.4 fb<sup>-1</sup>:
  - Measured: 3046
  - Predicted: 1090
- Understand rates to within a factor ~ 3.

### **Mitigation Strategies for ATLAS Operation**

- SEU in TTC links
  - Use large values of I<sub>PIN</sub> (> 100  $\mu$ A) to reduce  $\sigma$ (SEU)
  - Reset pipeline in FE chips and all counters if this desynchronisation detected by DAQ (20 to 50s).
- SEU in DAC register
  - Operator reset of module with high occupancy.
  - Full reset of all modules every 30 minutes.
- Mitigation strategies reduce effects of SEU to negligible level.



Tony \

## SEUs @ HL-LHC

- Expect SEUs to be more important @ HL-LHC because of higher Luminosity.
- What can we do to mitigate SEU?
  - Triple event redundancy in gates
  - Error correction on TTC link. P
  - Propose to correct for sequence of error bursts up to 16 bits long 
     slide.

## Versatile Link TTC SEU

- Measured BER vs optical power, Optical Modulation Amplitude (OMA).
- SEU killed by error correction (FEC)→Error correction required for TTC links
- Tests to determine if it is also required for data

A. Jimenez Pacheco et al., Single-Event Upsets in Photoreceivers for Multi-Gb/s Data Transmission, IEEE Trans. Nucl. Sci., Vol. 56, Iss. 4, Pt. 2 (2009), pp. 1978 – 1986.



### **SEU Summary**

- SEUs expected in SCT readout.
- Clear evidence of SEUs in ATLAS operation:
  - Predicted rates in ~ agreement with measurements.
  - Mitigation strategies work well.
- Mitigation strategies planned for HL-LHC should minimize impact of SEU.

### **Backup Slides**

### Number SEUs/chip



### Burst Length SEU p-i-n

