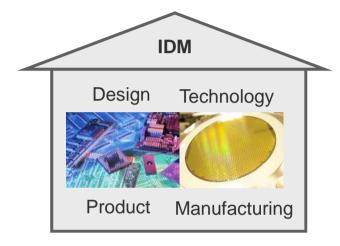


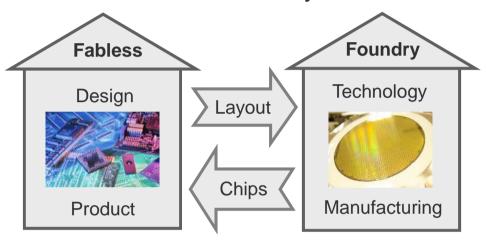
Technology Trends for Customized Analogue and Digital Circuit Manufacturing including Radiation Hardness Requirements

LFoundry

Outline

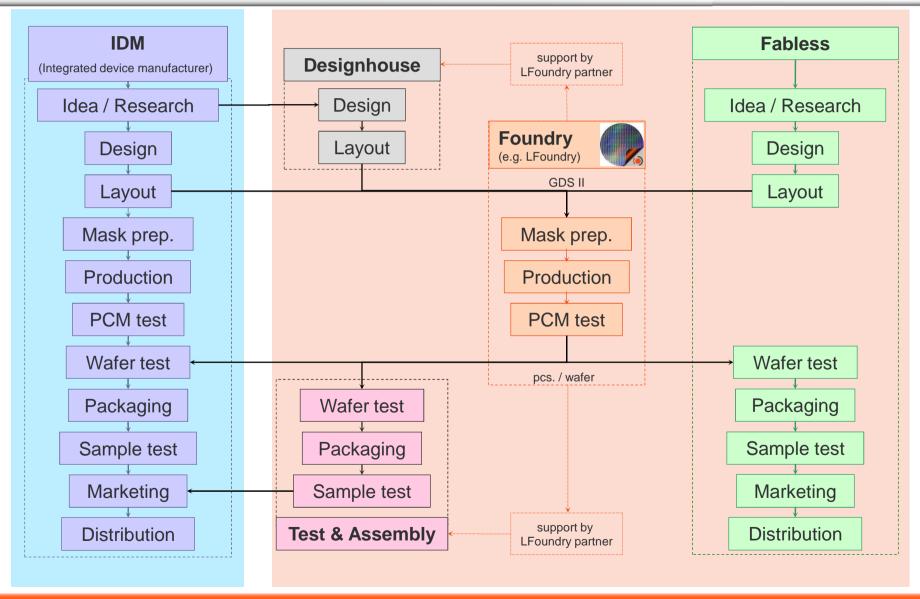


- Foundry Business Model
- Technology trends for More-than-Moore applications
- Semiconductor Devices Radiation Hardness Requirements & Applications


Foundry / IDM / Fabless Business Model

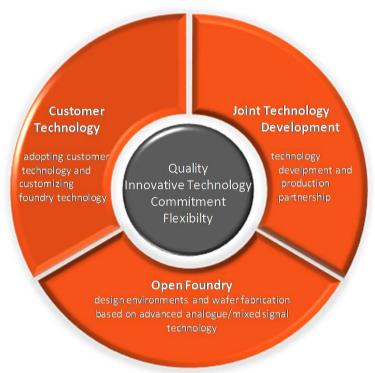
Traditional IDM Business

Traditional Foundry Business


- LIFE (LFoundry integrated Foundry Ecosystem)
 - philosophy: increase the interaction with our customers and make them to our partner

New integrated Foundry model

Foundry / IDM / Fabless Business Model



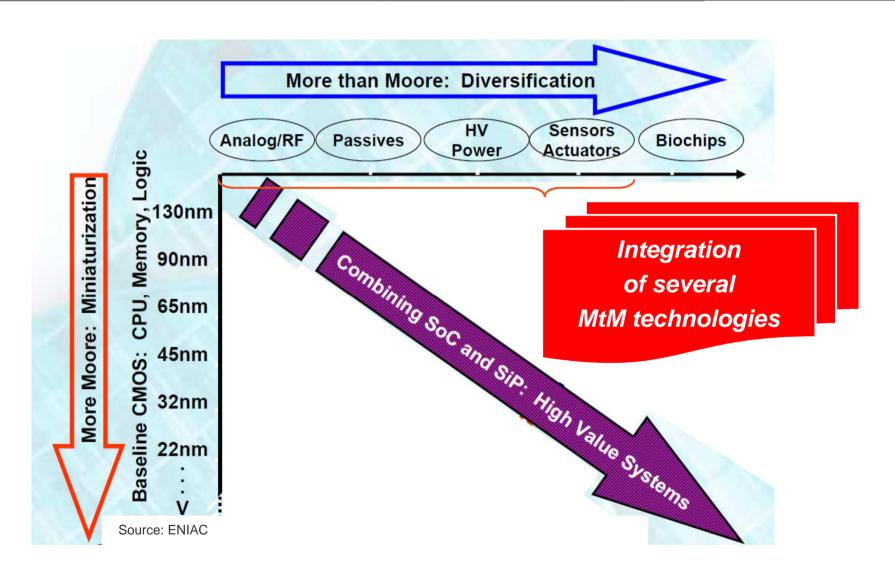
LFoundry Business Model

LFoundry has invented from the beginning an expanded foundry model to support trends in semiconductor device business

Offering special process platforms & engineering knowhow, enabling partners to setup their integrated technologies: CMOS image sensor, CMOS-MEMS processes, Backside processing, Special metallization,

- Supporting product companies in their next developments from the beginning
- Support growth plans of partners
- Utilizing the excellent network to leading institutes

- Support open foundry access through
 - Flexible PDK platform (i-PDK)
 - Continuous mainstream technology enrichment with modules like High Voltage, Opto-technology modules, RF devices, High density flash...
 - Specific qualifications like automotive and security for technologies and manufacturing sites


Outline

- Introduction of LFoundry and Foundry Business Model
- Technology trends for More-than-Moore applications
- Semiconductor Devices Radiation Hardness Requirements & Applications

Technology Trends More-than-Moore → Integration

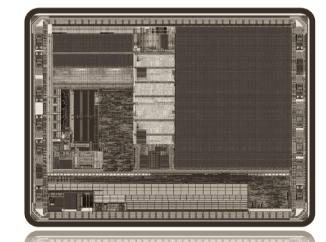
Integration in the Analog-Mixed-Signal Area

- Standard System on Chip SoC Integration
- Key requisite therefore is a proven, modular iPDK (interoperable Process Design Kit) and a qualified or accessable IP design block portfolio

PDK

Design rules, verified library models, physical verification, Reliability qualification, ESD, PCMs

Cell Library


low leak standard library high speed standard library elements such as Buffer, Latches, Flip-Flop, Physical Delay, Tristate, ...

Memory IP

SRAM (Mobile Semi) EEPROM (LFoundry) Flash (SST) OTP (NSCore) MTP (NSCore)

Mixed-signal IPs

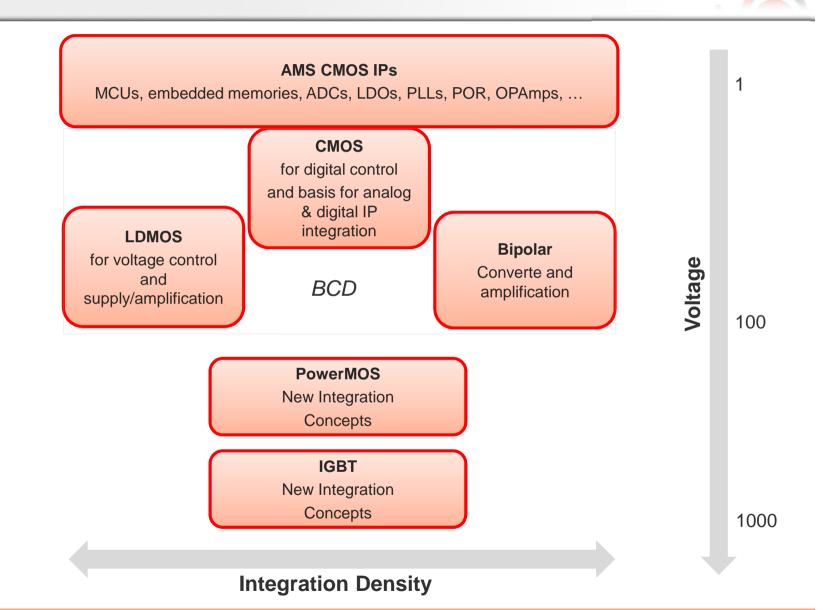
ADC, DAC, LDO, PLL, Bandgap, Bias Generator, Charge Pump, Oscillator, OP Amps, OTA, POR, ...

... whatever you need for your SOC, we have it

Cores

8051 until high end 8b to 32b also as RISC low leak to high performance

Interfaces

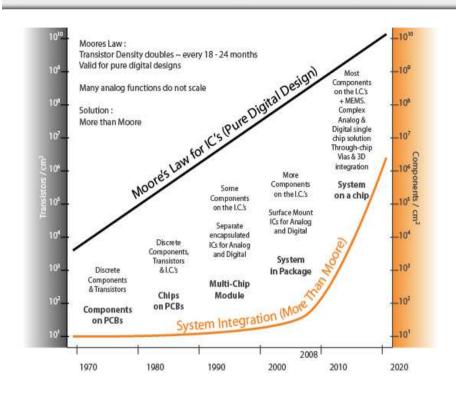

GPIO library, Serial, SPI Interface bus, I2C, USB, ...

Detectors / Security

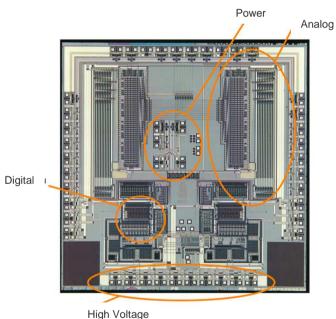
temperature sensor, AES/DES, ...

LFoundry (

Integration from SOC to Smartpower Area



SoC


Power / Smart Power

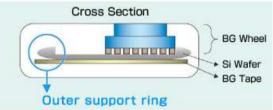
Integration of New Technology Applications

SoC with different 'IP' blocks, i.e. embedded memories, µController, analog-digital-converter

Beyond SoC:

Image Sensor Adv. Techn. **MEMS on CMOS Backside processing** Thin wafer handling 3D Integration **Through Si Via TSV** Wafer Level Packaging

Wafer Thinning as enabler for various Technology Applications



- i.e. for Advanced Image Sensors, Power Devices, 3D Integration
- Some options to decide
 - Thin wafer w/o carrier
 - → handling concepts
 - → low cost but barrier ~100µm

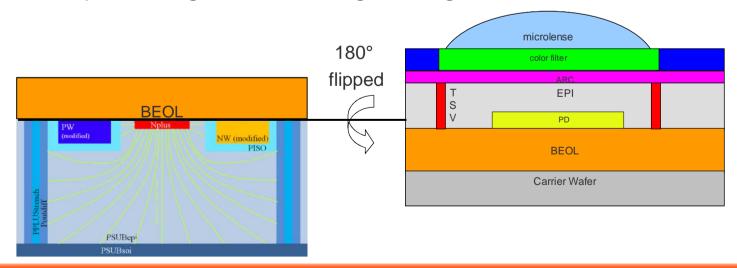
LFoundry

- Taiko process
 - → easier handling
 - → application limited

www.disco.co.jp

- Thin wafer with carrier
 - → various bonding methods (permanent vs temporary)
 - → smallest wafer thickness but highest complexity

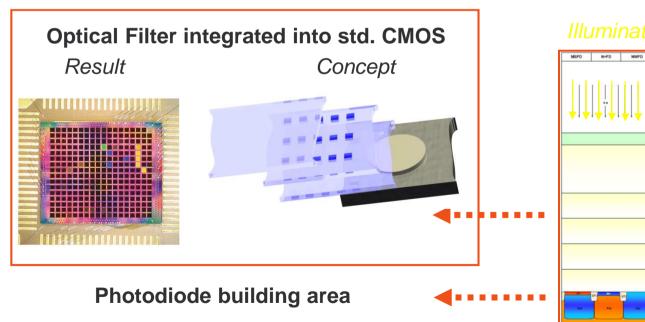
Integration in Advanced Image Sensor Technologies towards 3D

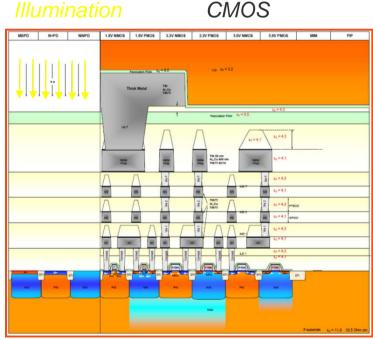


Next performance level on CMOS imaging: BSI – Backside Illumination:

Parameter	BSI	FSI	Change	Units
Sensitivity (@FD, 3000°K)	1.83	0.74		
QE (3000°K)	81	30		%
			26% increase	
Dark Current (@ 60°C)			8% increase	e /pixel
Read noise		13.1	3% reduction	
PRNU (@ 50% full-well)		1.83	unchanged	
Dynamic Range		59.9	2.4 dB improvement	dB
Max.SNR	42.2	41.1	1.1 dB improvement	dB

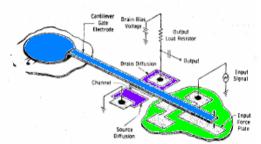
Posted by Tom JOY on December 3, 2008


Need to implement the following advance integration schemes: Backside processing, Wafer thinning, Through Silicon Via TSV



Smart Integration in Advanced Image Sensor Technologies

- Standard Filter for Image Sensors
 - Colour Filter Arrays CFA of type Bayer, RGB, ...
- New approaches: smart optical components
 - integrated into CMOS BEOL
 - used for colour and also polarisation filter



Smart Integration MEMS into CMOS

MEMS is not new:

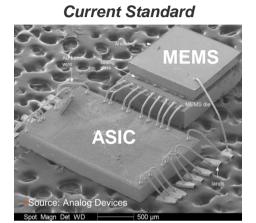
In case you were wondering, microsystems have physically been around since the late 1960's. It is generally agreed that the first MEMS device was a gold resonating MOS gate structure. [H.C. Nathanson, et al., The Resonant Gate Transistor, IEEE Trans. Electron Devices, March 1967, vol. 14, no. 3, pp 117-133.]

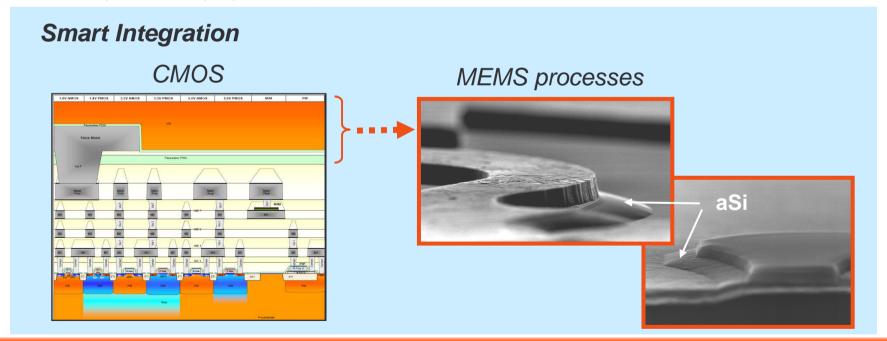
http://www.ansys.com/industries/mems/mems-what-is.asp

So, what is all the hype about MEMS for More-than-Moore?

→ it is the miniaturizations and therefore possibility of integration with highend

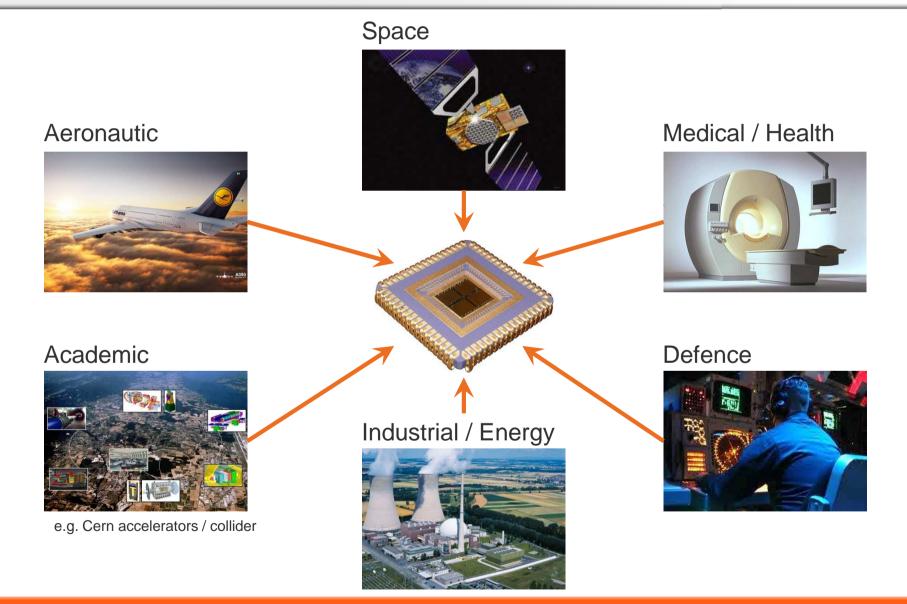
CMOS technologies


Source: Bosch

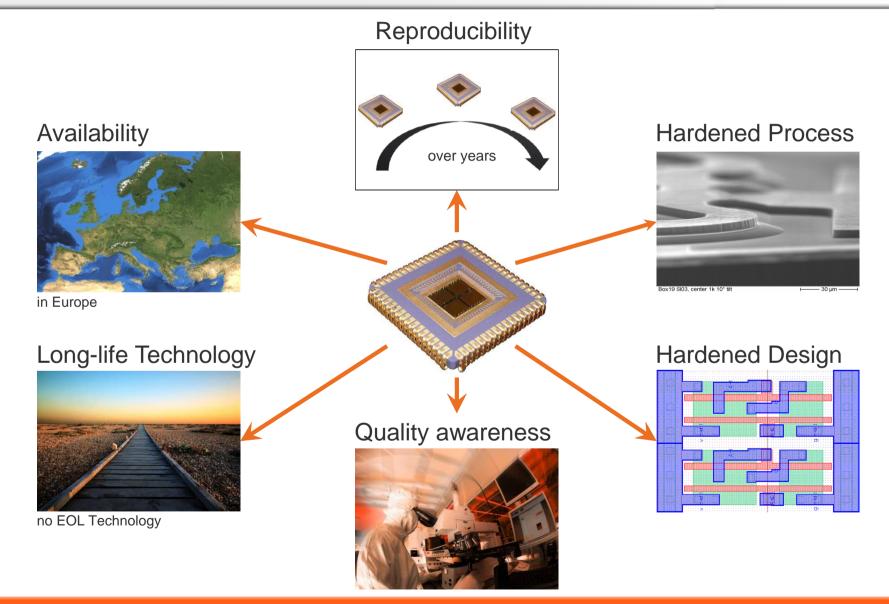


Smart Integration MEMS into CMOS

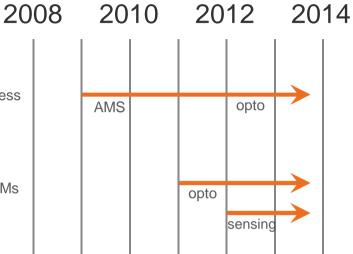
- Goal is integration of CMOS (ASIC) and Sensor (MEMS) into on chip
- Key for SMART is, to utilize advanced CMOS processes (i.e. 150nm) to enable complex circuit designs and then integrate MEMS on top
 - → smaller dimensions
 - → better signal performance & energy efficiency
 - → saving of packaging costs by factor >2


Outline

- Introduction of LFoundry and Foundry Business Model
- Technology trends for More-than-Moore applications
- Semiconductor Devices Radiation Hardness Requirements & Applications


Markets who need Radiation Hardness Silicon

Demand of Radiation Hardness Silicon


LFoundry History with RadHard Silicon Devices

Aerospace

Fabless

Medical / Health

IDMs

Academic

Institutes Universities

> IDM fabless

AMS sensind

opto

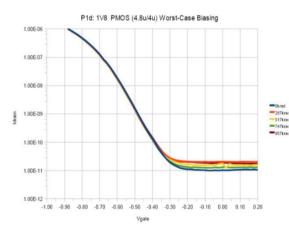
AMS

Industrial / Energy

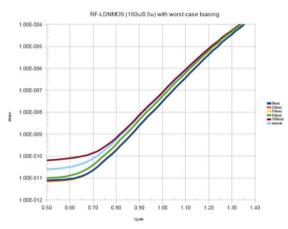
designhouse/ fabless

Defence

AMS


opto

RadHard Evaluation on LFoundry 150nm foundry technology



- With partner TESAT Spacecom, LFoundry 150nm standard process single main devices were checked against TID (total ionizing dose)
 - The selected devices were fabricated with standard layout, including minimum geometries, and irradiated up to 1Mrad with different dose rates

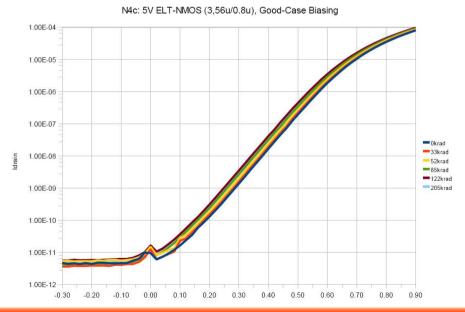
1.8V PMOS

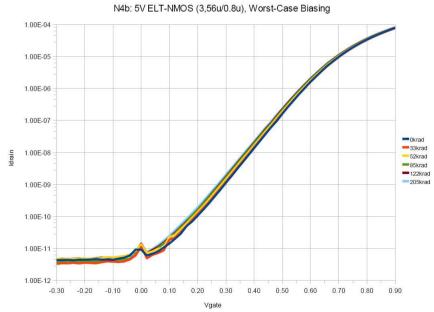
20V PLDMOS

irradiation sources Gammacell 220

- All PMOS devices show none or minimum degradation
- 20V LDMOS are robust up to 160krad, with only ~50mV shift of threshold voltage
- 1.8V NMOS are robust up to 300krad.
 At higher doses up to 1Mrad the off-state currents increase only to a few nA
- 3.3V NMOS show good robustness with minor limitations

RadHard Evaluation on LFoundry 150nm foundry technology

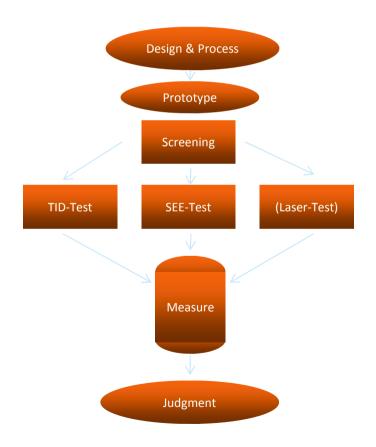

- Devices of interest: NMOS/PMOS 5.0V MOSFET with ring shaped Poly-Gate.
 - Point of interest: Vth, loff
 - Method: use different Gate-Biasing during radiation; use different dose rate and total dose (100krad / 1Mrad)


Result

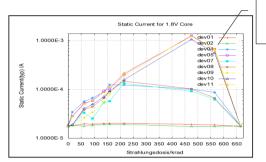
LFoundry 150nm 5.0V with special layout of Poly-Gate is very robust and show no degradation of Vth due to radiation up to more than 200krad.

Total dose test upto 200krad: Preliminary results for 5V NMOS with "enclosed layout"

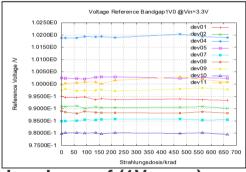
 $\label{eq:measurement} Measurement conditions: Input characteristic of drain current with Vds=5V. Vbs=0. \\ During radiation: Vgs=3V/Vds=0 \ (worst-case \ biasing) \ or Vgs=0V/Vds=3V \ (good-case \ biasing)$

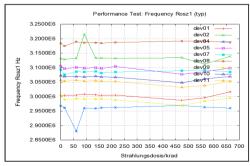


Dedicated Testchip for RadHard Evaluation of LFoundry 150nm technology


- Testchip by Tesat Spacecom / Processing at LFoundry within July 2010 MPW Shuttle
- Purpose: easy test structures first SEE-Test (single event effect) TID-Test

Function	TID	SEE (inkl. SEL)
Ring oscillator (4)	Χ	
Inverter Cains (3)		X
FF-Cains (3)		X
Digital Library Element's (4)		X
Input Buffer 3V	Χ	X
Output Buffer 3V	Χ	X
Output Buffer 5V	Χ	X
Output Buffer 7V	Χ	X
Output Buffer 12V	(X)	(X)
Temperature Sensor	Χ	X
Bandgap reference (3)	Χ	X
Voltage Regulator (3)	Χ	X
Current Control Amplifier		X


TID Results of Dedicated Testchip Evaluation of LFoundry 150nm technology



after healing

1.8V digital Core (static current)

bandgap ref (1V nom.)

freq. ring oscillator

Function	TID	
Ring oscillator (4)	OK	
Inverter Cains (3)	remain fully functional	
Flip-Flop-Cains (3)	remain fully functional	
Digital Library Element's (4)	remain fully functional	
Input Buffer 3V	OK	
Output Buffer 3V	OK	
Output Buffer 5V	OK	
Output Buffer 7V	OK	
Temperature Sensor	OK until 60krad	
Bandgap (3)	OK	
Voltage Regulators (3)	OK	

SEE Results of Dedicated Testchip **LFoundry** Evaluation of LFoundry 150nm technology

Letth between 5 ... 50 MeVcm²/mg

SETs from 5 MeVcm²/mg

SET

SET

Function	Test	Result	Comment
Digital Core	SEL	No SEL	OK
3.3 V digital IO	SEL	SELs from 33 MeVcm ² /mg	further investigate
5V digital Outputs	SEL	No SEL	OK
7V digital Outputs	SEL	SELs at 85°C, 85 MeVcm ² /mg	OK
Analog Circuits	SEL	No SEL	OK
Simple FFs	SEU	SEUs from 5 MeVcm²/mg	use double redundancy
Hardened FFs	SEU	Letth ~ 33 MeVcm ² /mg	OK

Buffer structures

Analog Circuits

depend on the drive strength

rad hard by design

Summary

- The Foundry model enables technology access for semiconductor device designers in a neutral, non-competitive setup. This access is given
 - From small to large device design entities
 - For plug-and-play design-to-silicon but also for joint design-technology development
- More-than-Moore is not only diversification smart integration of several MtM technologies into one solution is the key for new business opportunities:
 CMOS OPTO SMART POWER MEMS
- New key techniques like wafer thinning & handling, through silicon via, ... need to be more *smart integrated* into CMOS SoC setups in order to gain leverage for a wide application portfolio
- Well selected technologies in the 150nm range can be used for applications where radiation hardness is required

Thank You