

Upgrades to the ATLAS Level-1 Calorimeter Trigger

Pawel Plucinski

Stockholm University, Sweden.

For the ATLAS TDAQ collaboration

Planned upgrades for ATLAS L1Calo

- LS1 (2013-2014)
 - Upgrade digital filter and bunch-crossing ID system to FPGAs (not covered in this talk)
 - Add topology processing capability at Level-1

 New subsystems (Feature Extractors, or FEX) to perform egamma/tau/jet identification with higher granularity calorimeter data

Topology processing

- Current L1Calo system produces topology information
 - Sent only to high-level trigger (Regions of Interest, Rol)
 - L1 decision only uses object multiplicity
- Expect luminosity increase up to 2x design after LS1
 - nMCM provides better pile-up suppression
 - Cannot significantly improve Jet/egamma/Tau identification before LS2
 - Adding topology to L1 is the only major improvement available until then

Solution: Upgrade L1 real time data path to include topology information

L1Calo CMX

- Full backward-compatibility with CMM
- Upgrade with higher capacity
- Inputs from JEM/CPM (40-160Mb/s)
 - Crate \rightarrow System merging cables (40-160Mb/s)
 - Output to CTP
 - 40 Mbit/s (possible future upgrade to 80Mb/s)
- New functionality
 - High-speed optical transmission of TOBs to L1Topo
 - Up to 24 output fibers at 6.4Gb/s
 - Limited topology processing capability
 - Separate V6 FPGA
 - Up to 36 input fibers at 6.4Gb/s
 - Can be used as backup/supplement for
 - L1Topo if needed

L1Calo CMX

CMX Layout

L1Topo requirements

- High-speed optical input links
 - Accept TOBs from many sources
 - JEP/CP CMXs (LS1)
 - L1Muon
 - (Coarse in LS1, finer granularity in LS2)
 - eFEX, jFEX (LS2)
- Large amounts of programmable logic
 - Large TOB sort trees
 - Many topo algorithms running in parallel
- Sufficient output bits CTP
 - High-bandwidth output, with time multiplexing
- Scalable
 - Can add multiple modules running in parallel to provide additional logic for algorithm processing

L1Topo module

- High density 12-channel optical receivers (miniPODs)
 - Parallel fiber bundles from CMX, L1Muon, etc.
- Two high-end processors (Virtex 7)
 - Total of 160 input fiber links
 - 238 parallel links between FPGAs for partial data sharing
- Both fiber-bundle and low latency LVDS outputs into CTPcore

L1Topo prototype

TOBs from eFEX and jFEX, finer-granurality MUON TOBs from upgraded MUCTPI

L1Calo LS2 upgrade

- Motivation
 - For post-LS2 running (2018), Lumi >2.0.10³⁴cm⁻²s⁻¹
 - Total trigger rate \leq 100kHz
 - Trigger thresholds, the same level to maintain physics sensitivity to electroweak processes
- Constraints
 - LS2 upgrade has to stay within current level-1 latency envelope ~2.5µs.
 - Forward compatible with future upgrade (2022)
- Strategy
 - Using higher granularity trigger towers (digitised on detector), both laterally and in depth
 - Higher granularity allow better identification for egamma/tau/jet objects and improves energy resolution
 - Physics performance studies based on simulations give encouraging results

FEX calculations

LAr Supercell structure

ΔηxΔΦ=.025x.1

eFEX and jFEX module

- JFEX characteristics
- 288 input optical fibres
- 24 output fibers
- 6.4Gb/s (baseline)
- MicroPOD
- 6 big FPGAs per module
- ATCA based

Backplane

- eFEX characteristics
- 144 input optical links
- 36 output optical links
- 6.4Gbps (baseline)
- MiniPOD
- 4 big FPGAs per module
- ATCA based

High speed link simulation

- Very good correlation between hardware measurement and PCB simulation achieved @ 10Gb/s
 - RAL high speed demonstrator with Virtex-6 GTH

RAL High-speed Demonstrator

High speed link test

- Eye measurement @ 10Gb/s
 - Virtex-7 GTH + MicroPOD, joint BNL/RAL test

TP1

TP4

Pass, mask hit ratio 0

Pass, mask hit ratio 4.4x10E-5

High speed link test

- Bit Error Rate measurement @ 10Gb/s
 - Virtex-7 GTH + MicroPOD, joint BNL/RAL test
 - ~50% margin @ 10E-12, excellent

Conclusions

- L1Calo on course for adding topology capabilities over LS1
 - CMX and L1Topo on schedule for installation and commissioning by end of 2014
- Designed with LS2 requirements in mind
 - Large number of high-speed input links
 - Large processor FPGAs
 - Scalable as needed
 - Room to receive TOBs from eFEX, JFEX and upgraded MUCTPI
- The FEX architecture is well understood and defined for ATLAS Level-1 Calorimeter Trigger Upgrade for phase-I
- Module specifications are on the way
- High-speed link tests achieved very encouraging results at 10Gb/s line rate
- High-speed PCB simulation achieved good correlations with hardware measurement at 10Gb/s line rate