

A Reliability Test System for Production Grade DC-DC Modules

TWEPP 2013 - Power Working Group
September 2013

I. Troyano, F. Faccio, S. Michelis, G. Blanchot

- Motivating Scenario
- Overview of HALT
- The HALT Process Description
 - Cold and Hot Step Stress
 - Rapid Thermal Transitions
 - Vibration Step Stress
 - Combined Stresses
- Test Setup Description
 - Hardware involved
 - Monitoring software
- Test Results @ CERN
 - Cold Step Stress
 - Hot Step Stress
 - Rapid Thermal Transitions
- Conclusions

Motivating Scenario

- Overview of HALT
- The HALT Process Description
 - Cold and Hot Step Stress
 - Rapid Thermal Transitions
 - Vibration Step Stress
 - Combined Stresses
- Test Setup Description
 - Hardware involved
 - Monitoring software
- Test Results @ CERN
 - Cold Step Stress
 - Hot Step Stress
 - Rapid Thermal Transitions
- Conclusions

Motivating Scenario

- The prototyping phase of the DC-DC converter module should be finished to face a production of 10,000 parts next year
- It is really important to find the prototype weaknesses before entering in production
- The investment of time and resources should be done efficiently to maximize the design reliability
- The main goal is to provide a reliable device that fulfills the experiments needs, being able to work for a long periods of time without problems or malfunctioning
- Taking all this points into account, it was decided to use the <u>HALT test</u> process to accomplish all the points mentioned above

- Motivating Scenario
- Overview of HALT
- The HALT Process Description
 - Cold and Hot Step Stress
 - Rapid Thermal Transitions
 - Vibration Step Stress
 - Combined Stresses
- Test Setup Description
 - Hardware involved
 - Monitoring software
- Test Results @ CERN
 - Cold Step Stress
 - Hot Step Stress
 - Rapid Thermal Transitions
- Conclusions

Overview of HALT

What is the HALT process?

HALT = Highly Accelerated Life Test

- Test specifically done during the prototyping phase to increase device reliability
- The basic stresses applied are: Temperature, vibration and a combination of both
- The stresses applied do not reproduce the field conditions.
 They are used to precipitate the flaws on the device.
- Shorter in time
 - A full HALT test could be carried on in just one week time
- Widely used in the industry since 1990 (aeronautics, automotive, consumer electronics, etc...)
- A specific chamber is needed for running HALT tests properly.
 However, it is possible to do some parts of the test using a conventional climatic chamber

Overview of HALT

What is the HALT process?

The Bathtub Curve

 The HALT test will have a big impact basically in the useful life of the device and also, the time to reach the wearout mode is extended.

In other words, the device goes into production as a mature

design

- Motivating Scenario
- Overview of HALT
- The HALT Process Description
 - Cold and Hot Step Stress
 - Rapid Thermal Transitions
 - Vibration Step Stress
 - Combined Stresses
- Test Setup Description
 - Hardware involved
 - Monitoring software
- Test Results @ CERN
 - Cold Step Stress
 - Hot Step Stress
 - Rapid Thermal Transitions
- Conclusions

Cold and Hot Step Stress

- This part of the test uncovers flaws related to temperature dependency effects of the device and its components
- The test is meant to start at 20°C going down/up in steps of 10°C with a DWELL time of around 10 minutes.
- The test is stopped when:
 - The device stops working: In that case, the device should be restored to ambient temperature and corrective action taken. Once the problem is identified and solved, the test should continue where it was stopped.
 - The chamber limits are reached

- The fast change in temperature will rise up mechanical problems due to the sudden expansion and contraction of the device
- At least five thermal cycles are performed unless a destructive failure is encountered prior to completion. The thermal transitions are performed at the maximum attainable rate of change.

Vibration Step Stress

- The main goal of this part of the test is to find vibration related failures due to a mechanical fatigue of the device
 - The vibration levels on the device are monitored through accelerometers placed on major assemblies and subassemblies. This helps to evaluate the overall transmission of vibration into this areas.
 - Ideally, a six-degree-of-freedom vibration should be applied to uncover as much failures modes as possible

Combined Stresses

- A combined stress of temperature plus vibration is applied with the aim of drive out any failure modes that require the combination of both
- Basically is a composition of the Rapid Thermal Transitions and the Vibration Step Stress

Combined Stresses

Outline

- Motivating Scenario
- Overview of HALT
- The HALT Process Description
 - Cold and Hot Step Stress
 - Rapid Thermal Transitions
 - Vibration Step Stress
 - Combined Stresses

Test Setup Description

- Hardware involved
- Monitoring software
- Test Results @ CERN
 - Cold Step Stress
 - Hot Step Stress
 - Rapid Thermal Transitions
- Conclusions

Test Setup Description

Hardware involved

Test Setup Description

Hardware involved

Test Setup Description

Monitoring software

Outline

- Motivating Scenario
- Overview of HALT
- The HALT Process Description
 - Cold and Hot Step Stress
 - Rapid Thermal Transitions
 - Vibration Step Stress
 - Combined Stresses
- Test Setup Description
 - Hardware involved
 - Monitoring software
- Test Results @ CERN
 - Cold Step Stress
 - Hot Step Stress
 - Rapid Thermal Transitions
- Conclusions

Cold Step Stress

Cold Step Stress

- Negative Step Stress test conclusions
 - The test was done between +20°C and -70°C and any flaw was uncovered within this range
 - Going lower than -70°C not possible due to climatic chamber limitations
 - By definition, the temperature step stress procedure should continue until the device is destroyed and the cause known

Hot Step Stress

Hot Step Stress

Hot Step Stress

- Hot Step Stress test conclusions
 - The test was done between +20°C and +150°C and any flaw was uncovered within this range
 - It would be interesting to push the temperature up until finding the flaws and study them
 - It exists a known temperature limitation above +150°C in the cabling and connectors. Further actions will be taken to be able to arrive at even higher temperatures

- Rapid Thermal Transitions test conclusions
 - Thermal transitions between -70°C to 90°C did not uncover any failure mode
 - However, the module stop working while applying a wider temperature sweep (-70°C to 120°C) after 10 thermal cycles
 - The device under test will be studied and the root cause found soon. In the meantime

Conclusions

- The HALT test procedure is understood and we are now ready to go more into detail
- A HALT test setup was developed and a partial test carried on at CERN with relative good results
- We have found some limitations during the test linked to the climatic chamber and the test setup itself
- After analyzing the results obtained, further tests could be done externally using a specific HALT test chamber and the specialists support

Thanks for your time and attention!!

A Reliability Test System for Production Grade DC-DC Modules TWEPP2013 - Power Working Group September 13

I. Troyano, F. Faccio, S. Michelis, G. Blanchot

A Reliability Test System for Production Grade DC-DC Modules

TWEPP2013 - Power Working Group

September 13

I. Troyano, F. Faccio, S. Michelis, G. Blanchot

Flaw Detecttion

Datas de 5000 campagnes de test

32% de défauts non détectés sans l'utilisation de la méthodologie HALT

par rapport aux moyens de test conventionnels.

