Experience powering Virtex-7 FPGAs

Andrew W. Rose, Gregory M. Iles Imperial College, London

- 1.5Tb/s optical signal processor
- Xilinx Virtex-7 FPGA:
 - XC7VX485T or XC7VX69oT
- Advanced boot-loader & diagnostics (full system test at start-up)
- On-board firmware repository
- 2×144Mbit 550MHz QDR RAM (optional)
- Been in hand for over a year
 - Continuous testing over that period
 - Exceptionally well understood

Imperial MP7 processor board

See also TWEPP 2012: https://indico.cern.ch/contributionDisplay.py?contribId=86&confld=170595&sessionId=51 https://indico.cern.ch/contributionDisplay.py?contribId=97&confld=170595&sessionId=53

FPGA architecture

- MP7 uses XC7VX485T or XC7VX69oT
- Pin-compatible FFG1927 package
- This is how the XC7VX69oT looks in the documentation:

FPGA architecture

- MP7 uses XC7VX485T or XC7VX69oT
- Pin-compatible FFG1927 package
- And if we colour in the power pins:
- Half of the pins on the chip are dedicated to powering the thing

MP7 board — Top half

MP7 board – Bottom half

MP7 Ro power architecture

MGTs

- MP7 is an optical stream processor
- 72 links @ >10Gb/s, fully bidirectional
- 7-series MGTs require:
 - 1VO
 - 1V2
 - 1v8
- but there are very tight constraints!

MGTs

- The noise limits and tolerances on the MGT power supplies are tight!
- There are also constraints on voltage drop across the chip
 - Ohmic losses in the planes required that the regulators are as close as possible to the MGTs
 - There are two banks of MGTs
 - Each needed powering independently
- Space constraints also mean that the 10Gb/s signals run underneath the regulators
- Noise was a concern...

MGTs: Revision o

 Favoured LTM4606 6A ultralow-EMI switch-mode regulators by Linear, since:

- These are designed for transceiver applications
- Are sufficiently low that the fitted on the bottom of the board
- We had used these successfully on the Mini-T₅ card
- Included a regulator on a test board to test for interference
- Also, taped a Samtec kapton cable to top of regulator and tested 1oGb/s signal integrity that way
- Good news regulator had no effect on a 10G signal passing under it

MGTs: Revision o

- Card was designed before 7-series engineering silicon was available
- LTM4606 should have had ~35% headroom based on Xilinx's power estimator
- When card assembled and tested, power consumption 30% to 220% higher than Xilinx had predicted
- A lot of discussion with Xilinx engineers found a lot of "features" that Xilinx weren't aware of. The price you pay for living at the cutting edge.

DFE: RXLPMEN = 0		24 Chans, Quads: 113-118				24 Chans, Quads: 113-118			24 Chans, Quads: 113-118	
			Theory	Theory		Measured (ES Parts)			Measured (Production)	
			XPE 14.2	2 & Errata		Card 2, 1mOhm Resistor			Card 4, 1mOhra Kesistor	
		(Current (A)	Current (A)		Current (A)	Measured/Predicted Current		Current (A)	weasured/Predicted Current
										remeire
MGTAVcc (V)	1.00		5.37	7.73		6.59	1.23		5.74	1.10
MGTAVtt (V)	1.20		1.94	2.73		6.17	5.18 <u> </u>	70	5.45	2.81
Power (W)			7.70	11.00		13.99	1.82		12.78	1.66
							umber -			
						Laox	יייטן			
Low Power: RXLPMEN = 1		2	24 Chans, Quads: 113-1. 2		24 Chans, Quads: 113-118			24 Chans, Quads: 113-118		
			Theory Che or		Measured (ES Parts)			Measured (Production)		
		۱ ایس	7P 142	& Errata	Ca	ord 2, 1mOhm Resistor		Card 4, 1mOhm Resistor		
	1e	5	Current (A)	current (A)		Current (A)	Measured/Predicted Current		Current (A)	Measured/Predicted Current
Grey										
MCTAVcc (V)	1.00		4.07	6.11		5.46	1.34		5.29	1.30
MCTAVtt (V)	1.20		2.11	2.94		6.54	3.10		5.16	2.45
Power (W)			6.60	9.63		13.31	2.02		11.48	1.74

MGTs: Revision o

- Very impressed with LTM4606
 - Rated 6A nominal
 - 8A peak
- But performed excellently even when run flat-out at 25% above its nominal rating

MGTs: Revision 1

- We were very concerned about the possibility of power supply changes introducing noise
- Several test cards were made to test alternative power supply designs on an Ro card
- Noise was measured both electrically and by its effect on the error-rate of the 10Gb/s optical links
- LTM4601 switch-mode regulator by Linear won the day:
 - Same size as the LTM4606 (although different footprint)
 - Similar external components
 - Simple replacement

MGTs: Revision 1

- 485, RPBS7, 10G, QPLL, 24 links (one side),
- Plots show bathtub from 6
 different links: 1 from each quad

Magnus Loutit

Core power

- Large BGAs puncture the board with vast forest of vias
 - Increase the effective resistivity of the power planes
- Core power pins are at centre of BGA
- Use fills in three layers to get power into core to ensure sufficient current
 - Prefer layers with 10z copper over
 ½oz copper layers
- Use remote sense, even though the distance is only a few cm

Power supply monitoring

- MP7 makes extensive use of LTC2990 four channel voltage/current/power and temperature monitor
 - Sub-millivolt resolution
 - 1% current resolution
 - 1% temperature resolution
 - 10-Lead MSOP Package size is important in the space-constrained μTCA environment
- MP7 measures:
 - Both incoming supplies
 - ALL bulk supplies on the board
 - Subset of secondary/speciality supplies
- Sensors are distributed around the board allowing an approximate temperature profile of the board

Power consumption sensitivity

- Power consumed by the Virtex-7 can be extraordinarily sensitive to configuration flags
- Unused and non-optimally configured resources can contribute massively to power consumption. Not always immediately obvious.
- Need to consider the entire design (all configuration flags) before making statements about power consumption
- No substitute for hands-on experience

With great power come great heat dissipation...

- With early revision of board, 48-link design hit thermal cut-out when on the bench (no fans). Reached 60°C in a crate.
- Designed a heatsink ourselves (old-school educated guesswork, no simulations) and prototyped in-house. Dissipated 40% more power than the off-the shelf part. Temperature didn't exceed 45°C in 48-link design.
- Production heatsinks manufactured externally and anodized (increase radiative transfer by further 25%)

Conclusions

- The compact nature and excellent performance of Linear's switch-mode modules make them an excellent match for 7-series FPGAs and the μTCA environment, where space is constrained
- Xilinx power estimator should be considered exactly that... AN ESTIMATOR
 - Don't rely on it being correct
 - It is no substitute for hands-on experience
- 7-series FPGAs have a large number of configuration flags and it is not always immediately obvious how these will affect power consumption