Goals

- Define a readout architecture with the best opportunities to take advantage of future advances in electronics and information technology:
 - Many, many core CPUs, GPUs, Intel PHI, FPGA co-processors
 - N > 100GB/s networking
 - SW tools for parallelization
- Reduce dependence on custom electronics and its inherent problems of long term support by experts.
- Encourage migration from custom HW → COTS HW → SW:
 - Provide a PC server
 - BUSY output, via GLIB
- Define an architecture that is scalable and flexible, since not known exactly what future requirements will be.
- Provide a communication path for TTC, detector control, configuration and monitoring

Advantages

- Read out topology can be configured to match the bandwidth and computing power required by the actual detector occupancy, and the performance demanded to handle the event request rate by the High Level Trigger.
- Allows the endpoint builder to concentrate on the end-point functionality
- The off-detector endpoints need not implement GBT hardware interfaces. This means that they may not need to include FPGAs.
- A significant part of the read out logic would be shared and maintained centrally.
- Enables an easily scalable read out system
- Off-detector endpoints do not need to be mapped one-to-one to the geographical areas serviced by a GBT.
- Any GBT can be connected to any FE, just configure
- Can upgrade to faster GBT, faster COTS network independent of data processor upgrades

TTC and BUSY

- Dedicated connection from TTC to send TTC data to GBT:
 - Chan A & B on an 80Mbit/s E-link, or decoded signals on a 160 or 320 Mbit/s E-link
 - Can also send TTC data to off-detector end-points via LAN
- BUSY output asserted when internal buffers are almost full – FEs and Backends may send a message to assert BUSY
- Transparent upgrade to the Phase-2 TTC using mezz board
- LHC clock and its multiples, from TTC, are provided to FEs

Planned Demonstrator

- 24 input GBT links (one GBT dedicated to TTC)
- PC server:
 - COTS PCIe Xilinx FPGA board
 - Dual 40G network card (configurable as Ethernet or Infiniband)
- TTC serial signal decoded in FPGA from GLIB project
- BUSY output, via GLIB
- Push each GBT stream to dedicated stream buffer in PC memory via PCIe
- Use Linux to manage the network interface
- TCP/IP, ARP, Infiniband management
- Data from Level-0: Low latency, hi priority, direct path from GBT E-link to dedicated Level-1 link

Internal data multiplexing to PCIe

- Cloning stream to multiple end-points
- TCP stream or UDP datagram
- Multicast or point-to-point
- QoS level
- Checksum, or not, at end of packet

GBT: Gigabit Transfer ASIC

- Developed by CERN
- Radiation hard
- 3.2 Gbits/throughput with error correction, 4.48 without
- Aggregates many slow (80, 160 or 320Mbit/s) serial data streams (E-links) onto a single GBT
- 120-bit frames synchronous with LHC clock, fixed latency
- GBT ASIC provides links in both directions
 - one GBT can transport event, configuration, control and monitoring streams
- Provision for fast clock and transfer of timed signals with fixed, adjustable, latency
- Future GBT ASIC planned with double the bandwidth

FELIX – Front End Link eXchange

FELIX, a new approach to interfacing on-detector electronics separates the Front End link interfacing from the Front End data processing. It eliminates the static point-to-point connections between the Front Ends and the Read Out system. Goals

This allows use of high bandwidth commercial network technology for data aggregation, transport and distribution, while preserving the ability of each detector to perform its specific (and evolving) data processing. COTS PCs may often be used for data processing. Several custom, radiation-hard links based on the CERN GBT ASIC are aggregated to a hi-speed (40Gbit) Ethernet or Infiniband switched network which provides flexibility, adaptability and upgrade-ability.

GBT links aggregate many slower serial links, called E-links, onto one fast serial link. Different E-links may carry different kinds of logical data, "streams": events, TTC, configuration, calibration, slow control. Multiplying the bandwidth and computing power required by the actual data processing. COTS PCs may often be used for data processing. This allows use of high bandwidth communication network technology for data aggregation, transport and distribution, while preserving the ability of each detector to perform its specific (and evolving) data processing. COTS PCs may often be used for data processing. Several custom, radiation-hard links based on the CERN GBT ASIC are aggregated to a hi-speed (40Gbit) Ethernet or Infiniband switched network which provides flexibility, adaptability and upgrade-ability.

FELIX maps streams to network endpoints: endpoints can then be dedicated to specific functions without regard to the physical link topology. The advantages of interfacing data streams from Front End links to a switched network include flexibility in routing and aggregating data, easier load balancing and easier scalability. FELIX is not detector specific, but streams have many configurable options. Splits off Detector Control System, DCS, data streams preserves the ability of the DCS to operate independently of the DAQ system.

TTC and Busy are special endpoints.

Status:

- Expected to be recommended by ATLAS Readout Upgrade Working Group for deployment after LHC Long Shutdown 3
- Deployment after LHC Long Shutdown 3
- For transferring Lvl-0 data to Lvl-1 processors, a Direct Low Latency stream is used to inform FEs which data is requested for Lvl-1 processing.
- For transferring Lvl-0 data to Lvl-1 processors, a Direct Low Latency stream is used to inform FEs which data is requested for Lvl-1 processing.
- Similarly a Direct Input Low Latency stream is used to inform FEs which data is requested for Lvl-1 processing.
- The transfer is GBT-to-GBT, entirely within the FELIX FPGA board, using “cut-through” routing to minimize latency.

Direct, low latency paths for trigger

- For transferring Lvl-0 data to Lvl-1 processors, a Direct Output Low Latency stream will be routed to an output GBT link rather than a network endpoint.
- Several input streams may be combined, in parallel, onto one GBT output link dedicated to Level-1 input.
- Several input streams may be combined, in parallel, onto one GBT output link dedicated to Level-1 input.
- Similarly a Direct Input Low Latency stream is used to inform FEs which data is requested for Lvl-1 processing.
- The transfer is GBT-to-GBT, entirely within the FELIX FPGA board, using “cut-through” routing to minimize latency.

Data transfer lists with guaranteed relative BC clock timing

- Primarily for calibration sequences
- A list of data items with relative delays (in BCs) can be provided by transfer lists with guaranteed relative BC clock timing.
- Primarily for calibration sequences
- A list of data items with relative delays (in BCs) can be provided by transfer lists with guaranteed relative BC clock timing.
- The transfer is GBT-to-GBT, entirely within the FELIX FPGA board, using “cut-through” routing to minimize latency.

Acknowledgement: We would like to acknowledge important requirements and criticisms provided by members of the ATLAS Read Out Upgrade Working Group.