

The RCU2

ALICE TPC readout electronics consolidation for Run 2

Johan Alme

Bergen University College, Norway on behalf of the ALICE-TPC collaboration

TWEPP 2013, Perugia, Italy 23rd – 27th September 2013

- TPC is divided into 2 x 18 Sectors:
 - 216 Readout Control Units (RCUs)
 - 4356 Front End Cards (FECs)
- The RCU is a complex system:
 - RCU Motherboard
 - Detector Control System (DCS) Board
 - Embedded Linux platform
 - Source Interface Unit Card (SIU)
 - In total 3 PCBs with 4 FPGAs
- 2 branches per RCU of a multidrop parallel bus
 - 18–25 FECs per RCU
 - depending on position
 - Peak bandwidth 200 MB/s

ALICE Run 2 Scenario

- Run 2 is the period between Long Shutdown 1 (LS1) and Long Shutdown 2 (LS2)
 - Planned start of Run 2: January 2015
- Run 2 will have higher interaction rates and higher track densities
- Expected values for Pb-Pb collisions:
 - Peak luminocity: 1 4 x 10²⁷ cm⁻²s⁻¹
 - 8 30 kHz interaction rate
 - Current ALICE design value: 8 kHz
 - 40% more data for central events
 - Event sizes increase from 65 MB to 90MB
- Higher readout speed needed
- Higher radiation load => more Single Event Upsets

Low multiplicity event from Run 1 High multiplicity event is completely crowded Run 2 will have even *higher* multiplicity

Motivation for Upgrade (I)

Data Rate Limitations:

- Current bottleneck: Bandwidth of the data bus
 - ≤ 200 MB/s per branch
 - Large (fixed) overhead addressing and header
- Bandwidth of optical detector data link (DDL)
 - 160 MB/s
- Stability Limitations (Run 1 experiences):
 - End-Of-Run situations caused by radiation related errors in the TPC electronics have been seen
 - DCS board failures frequent few per fill
 - Not "mission critical"

Two read-out modes: sparse and full read-out. Read-out time for full TPC is defined by the slowest read-out partition

Motivation for Upgrade (II)

- Main message:
 - The readout performance is limited by the parallel bus architecture
 - This reduces the expected performance for Run 2
 - *Conclusion:* We need a faster data readout than what the current solution provides!
 - Both main FPGAs on the RCU has a relatively high SEU susceptibility and almost no design-level protection
 - Not enough resources in the FPGAs to implement it
 - Conclusion: With even the higher luminosity in Run 2 we need an improved radiation tolerance for the readout chain!

RCU2 The ALICE TPC Consolidation Effort

- Constraints:
 - Time-budget
 - Reuse all exisiting interfaces
 - TTC fiber
 - DAQ fiber
 - Ethernet cable
 - Power cable
 - GTL bus
 - No change to form-factor and cooling
 - Improve radiation tolerance
 - Increase data rate to meet Run2 conditions
- Solution RCU2:
 - One single radiation tolerant FLASH based SmartFusion2 FPGA
 - FPGA design composed of a few building blocks largely based on existing modules
 - Backplanes Double the number of readout branches to 4 branches
 - Nice to have functionality: Radiation Monitor

Branch Partitioning

- There are 6 readout partitions per TPC sector:
 - 6 different sizes of backplanes
 - Two wings per partition
- Each wing is electrically split into two branches each with new branch naming convention
 - $A \rightarrow A_{inner}(AI) | A_{outer}(AO)$
 - B → B_inner (BI) | B_outer (BO)
- Depending on partition various number of FECs per branch
 - RPO: 5 + 4 + 4 + 5
 - RP1: 6+6+6+7
 - RP2: 5 + 4 + 4 + 5
 - RP3-RP5: 5 + 5 + 5 + 5

RCU2 Backplanes

- Two options:
 - Adapter card solution 1.
 - All in One solution 2.
- Pros and Cons are considered for both options
- Prototypes will be produced for both options and decision taken afterwards.
- Location of connectors between RCU2 and branches are fixed:
 - Backward compatible with current backplanes

RCU2 Hardware

Johan Alme - TWEPP 2013, Perugia, Italy 23rd – 27th September 2013

10

Microsemi Smartfusion2

- The Smartfusion2 M2S050-FG896 provides:
 - Radiation Tolerant Flash Cells
 - SECDED encoded DDR RAM interface
 - Microcontroller Subsystem with ARM Cortex M3 and useful peripherals
 - Platform for Embedded Linux
 - 5 Gb/s operation in custom working mode on one lane of the SERDESIF for DDL2*
 - Enough resources to have TMR on vital parts of the logic

* Not available before end of 2013

RCU2 Hardware

- Pictures shows first draft of RCU2 layout
- Important points:
 - Backward compatible regarding placement of connectors
 - Reuse of cooling plates
 - Constraints placement regarding heat dissipation and connector locations
- Power estimates
 - Typical values (current consumption):
 - Ext 4V3: ~1.2A
 - Ext 3V3: ~4.3A
 - The GTL bus drivers are by far the most power-hungry components on the board

RadMon – Radiation Monitor

- On the present RCU there is an additional FPGA that counts and corrects SEUs in the configuration memory in the main FPGA
 - This acts as a radiation monitor!
- This is an interesting feature to keep for the RCU2:
 - Additional SRAM memory and Microsemi proASIC3
 250 added to the RCU2
 - Not enough user-IOs on the smartFusion2 for this feature
 - Low risk design already done and proven*
 - Cypress SRAM same as used for the latest LHC RadMon devices
 - Extensively characterized in various beams (n, p, mixed) and compared/benchmarked to FLUKA MC simulations

* Arild Velure "Anvendelse av FPGA som preprosessor i en SRAM-basert nøytrondetektor", Master Thesis 2011

TTC interface

- TTC = Timing, Trigger and Control
 - System responsible for distribution of system clock and triggers
- One of the challenges of the upgrade is that the TTCrx ASIC is out of stock
 - This is the Trigger/Clock receiver chip for the Front end Electronics
 - No proven radiation tolerant TTCrx replacement exist!

- HFBR 2316T Optical Receiver (suggested by TTC group)
- MAX3748 Post limiting amplifier
- Clock Data Recovery internally in FPGA
 - Challenge: The clock signal must be recovered with high accuracy!
- This has been tested and verified in the lab with real-life setup
 - Radiation tolerance not yet proven
 - Involves simple components with no configuration registers Success very likely!

Optical TTC signal

HFBR

2316T

Makes reuse of existing FPGA modules very easy

Clk 40MH

Smartfusion2

CDR

Digital LVDS

Post

Limiting

Amplifier

Analog single ended

RCU2 FPGA design

- The ARM Cortex M3 hosts an Embedded Linux platform
 - New drivers are needed
 - Most software can be reused
- The FPGA PLD design is heavily based on the present RCU design with a few new features
- New readout scheme:
 - Ordering of channels by pads & rows
 - Higher clock speed
 - Pause and recover implementation
 - Discard of Junk data
- Important: Improve radiation tolerance

- One row of sensor pads are spread over all 4 branches
- Data pre-prossesing demands that data is shiped ordered by padrow
 - Needed to find charge clusters along tracks in the HLT/DAQ system
- A chunk of data is defined:
 - Number of channels belonging to same padrow and branch ordered by pad location
 - The order of the channels within a chunk is configurable to match pad location

Readout Scheme and Data Ordering (II)

- Given average event size estimations for 0-10% central events (Run 2):
 - Max average size of one chunk is ~35
 kBit
 - Readout partition 1
 - Highest channel density
 - Largest data volume
 - Bandwidth per branch: ~1.0 Gbit/s
 - Min. Readout speed per FIFO: 32 bit @ 125 MHz
 - Bandwidth RCU2 DDL2 interface: 4.0
 Gbit/s
- Given internal memory resources:
 - Branch FIFO capacity: 4.7 average max size chunks
- Simulations are planned to get exact figures

Irradiation Campaigns

- Component testing will be done at Oslo Cyclotron (in-house)
 - ~30 MeV protons
 - 1 slot in October & 3 slots in November
 - We can not test all components individually (No time!)
 - A list have been made with components we find it critical to test as early as possible
 - This is essentially "new" components that we don't have experience with, or
 - Components in critical parts of the design (i.e. TTC chain)
 - Testing of the smartFusion2
 - Effects of Single Event Transients can be a problem at higher clock speeds*
- RCU2 system test in Uppsala or PSI early next year
 - 180 MeV Protons & Neutrons possible
 - Beamtime will be requested when we are certain to reach the milestone

* https://indico.cern.ch/getFile.py/access?resId=0&materialId=slides&confId=152527

Summary & Outlook

- The proposed upgrade would enable ALICE to collect a significant larger amount of events in the central barrel at a moderate cost
 - Estimated cost: ~455 kCHF
- The read-out time for TPC events is estimated to be improved by a factor of up to 2.6
 - TPC will conform to the running scenario envisaged for Run 2 of ALICE
 - SystemC simulations are planned to confirm this figure
- Radiation tolerance will be improved
- Biggest challenge for the project is the tight time-budget constraint
 - At time of writing we are approximately on schedule

Timeline RCU2

Thanks for Listening

RCU2 people (in no particular order): • Johan Alme (johan.alme@hib.no) – Bergen University College, Norway Lars Bratrud, Jørgen Lien, Rune Langøy – Vestfold University College, Norway Ketil Røed, Chengxin Zhao – University of Oslo, Norway Kjetil Ullaland, Dieter Röhrich, Shiming Yang, Arild Velure, Inge Nikolai Torsvik, Christian Torgersen – University of Bergen, Norway Attig Ur Rehman – COMSATS, Islamabad, Pakistan Tivadar Kiss, Ernö David – Cerntech, Budapest, Hungary Christian Lippman– GSI Darmstadt, Germany Anders Oskarsson, Peter Christiansen, Lennart Osterman – University of Lund, Sweded Harald Appelshäuser, Torsten Alt, Attilio Tarantola – Goethe University Frankfurt, Germany Fillipo Costa – CERN, Switzerland Taku Gunji – University of Tokyo, Japan

