The trigger-less TBit/s readout for the Mu3e experiment

Dirk Wiedner
On behalf of the Mu3e collaboration
The Mu3e Signal

• $\mu \rightarrow eee$ rare in SM
• Enhanced in:
 o Super-symmetry
 o Grand unified models
 o Left-right symmetric models
 o Extended Higgs sector
 o Large extra dimensions

- Rare decay (BR<10^{-12}, SINDRUM)
- For BR $O(10^{-16})$
 - $>10^{16}$ muon decays
 - High decay rates
 $O(10^9$ muon/s)
The Mu3e Experiment

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope
The Mu3e Experiment

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope

- Muon beam $O(10^9 / \text{s})$
- Helium atmosphere
- 1 T B-field
The Mu3e Experiment

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field
The Mu3e Experiment

- Muon beam $O(10^9/s)$
- Helium atmosphere
- 1 T B-field

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope
The Mu3e Experiment

- Target double hollow cone
- Silicon pixel tracker
- Scintillating fiber tracker
- Recurl station
- Tile hodoscope

- Muon beam $O(10^9/s)$
- Helium atmosphere
- $1 \, \text{T B-field}$
Readout Requirements

- 2.5 GHz muon decays
- 50 ns readout frames (pixel)
- $O(5000)$ pixel chips
- $O(7000)$ scintillating fibers
- $O(7000)$ timing tiles
- Online filtering
Timing Detectors

- Scintillating fiber hodoscope
- Timing tiles
- On detector zero-suppression

Poster Session:
- STiC - A Mixed Mode Silicon-Photomultiplier Readout ASIC for Time-of-Flight Applications (Tobias Harion)

O(7000) fibers
O(7000) tiles
Silicon Pixel Detector

- Inner double layer
- Outer double layer
- Re-curl layers
 - Both sides (x2)
- Sensor size
 - 1x2 cm2 inner layers
 - 2x2 cm2 outer layers

180 inner sensors
4680 outer sensors
HV-MAPS

- **High Voltage Monolithic Active Pixel Sensors**
- HV-CMOS technology
- Reversely biased ~60V
 - Charge collection via drift
 - Fast O(100 ns)
 - Thinning to < 50 μm possible

by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology
Nucl.Instrum.Meth., 2007, A582, 876
HV-MAPS

- **High Voltage Monolithic Active Pixel Sensors**
- HV-CMOS technology
- Reversely biased ~60V
 - Charge collection via drift
 - Fast O(100 ns)
 - Thinning to < 50 μm possible

by Ivan Peric
I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology
Nucl.Instrum.Meth., 2007, A582, 876
HV-MAPS

• High Voltage Monolithic Active Pixel Sensors
• HV-CMOS technology
• Reversely biased ~60V
 o Charge collection via drift
 🔄 Fast O(100 ns)
 o Thinning to < 50 μm possible

• Integrated readout electronics
 o Zero suppression
 o 800Mbit/s serial LVDS outputs

by Ivan Peric
I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology
Nucl.Instrum.Meth., 2007, A582, 876
HV-MAPS

- **High Voltage Monolithic Active Pixel Sensors**
- HV-CMOS technology
- Reversely biased ~60V
 - Charge collection via drift
 - Fast O(100 ns)
 - Thinning to < 50 μm possible
- **Integrated readout electronics**
 - Zero suppression
 - 800Mbit/s serial LVDS outputs

by Ivan Peric

I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology
Nucl.Instrum.Meth., 2007, A582, 876
Pixel Readout Scheme
Pixel Readout Scheme

- **Pixel logic**
 - Pixel address (8 bit)
 - Frame number (4 bit)
 - 50 ns frames

- **Column logic**
 - Pixel data
 - Column address
 - Coarse time

- **Frame logic**
 - Super Frame
 - Contains 16 x 50 ns readout frames
 - + Sensor header

- **Readout buffer**
- **Serializer and fast link(s)**

● Dirk Wiedner TWEPP2013
Pixel Readout Scheme

- **Pixel logic**
 - Pixel address (8 bit)
 - Frame number (4 bit)
 - 50 ns frames
- **Column logic**
 - Pixel data
 - Column address
 - Coarse time
- **Frame logic**
 - Super Frame
 - Contains 16 x 50 ns readout frames
 - + Sensor header
- **Readout buffer**
- **Serializer and fast link(s)**
Pixel Readout Scheme

- **Pixel logic**
 - Pixel address (8 bit)
 - Frame number (4 bit)
 - 50 ns frames

- **Column logic**
 - Pixel data
 - Column address
 - Coarse time

- **Frame logic**
 - Super Frame
 - Contains 16 x 50 ns readout frames
 - + Sensor header

- **Readout buffer**
- **Serializer and fast link(s)**
Pixel Readout Scheme

- **Pixel logic**
 - Pixel address (8 bit)
 - Frame number (4 bit)
 - 50 ns frames

- **Column logic**
 - Pixel data
 - Column address
 - Coarse time

- **Frame logic**
 - Contains 16 x 50 ns readout frames
 - + Sensor header
 - Super Frame

- **Readout buffer**

- **Serializer and fast link(s)**

```
Pixel address

Pixel Logic

Column Logic

Frame logic
Readout buffer
Serializer

4 x serial @ 800 Mb/s
```
Data Link Scheme

From detector slices to time slices
Link Overview

- Front end links
 - Pixel sensor to on-detector FPGA
 - 400 – 800 Mbit/s
 - LVDS
 - Timing detector readout
- Optical links from detector
 - Front end FPGAs
 - ... to readout boards
 - 5 Gbit/s
- Optical links in counting room
 - Off-detector read out boards
 - ...to PC Farm
Link Overview

- Front end links
 - Pixel sensor to on-detector FPGA
 - 400 – 800 Mbit/s
 - LVDS
 - Timing detector readout
- Optical links from detector
 - Front end FPGAs
 - ... to readout boards
 - 5 Gbit/s
- Optical links in counting room
 - Off-detector read out boards
 - ...to PC Farm
Link Overview

- Front end links
 - Pixel sensor to on-detector FPGA
 - 400 – 800 Mbit/s
 - LVDS
 - Timing detector readout
- Optical links from detector
 - Front end FPGAs
 - ... to readout boards
 - 5 Gbit/s
- Optical links in counting room
 - Off-detector read out boards
 - ...to PC Farm

O(8Tbit/s)
Link Overview

- Front end links
 - Pixel sensor to on-detector FPGA
 - 400 – 800 Mbit/s
 - LVDS
 - Timing detector readout
- Optical links from detector
 - Front end FPGAs
 - ... to readout boards
 - 5 Gbit/s
- Optical links in counting room
 - Off-detector read out boards
 - ...to PC Farm
Link Overview

- Front end links
 - Pixel sensor to on-detector FPGA
 - 400 – 800 Mbit/s
 - LVDS
 - Timing detector readout
- Optical links from detector
 - Front end FPGAs
 - ... to readout boards
 - 5 Gbit/s
- Optical links in counting room
 - Off-detector read out boards
 - ... to PC Farm
Link Overview

- **Front end links**
 - Pixel sensor to on-detector FPGA
 - 400 – 800 Mbit/s
 - LVDS
 - Timing detector readout
- **Optical links from detector**
 - Front end FPGAs
 - ... to readout boards
 - 5 Gbit/s
- **Optical links in counting room**
 - Off-detector read out boards
 - ... to PC Farm

\[O(4Tbit/s)\]
Front End FPGAs

- FPGAs on detector
 - 86 (+96) pieces
- Receive sensor data
 - 108 LVDS inputs
- 5 Gbit/s outputs
 - 8 optical links
 - ... to counting house
- Switching data between readout boards farms A-D
Front End FPGAs

- FPGAs on detector
 - 86 (+96) pieces

- Receive sensor data
 - 108 LVDS inputs

- 5 Gbit/s outputs
 - 8 optical links
 - ... to counting house

- Switching data between readout boards farms A-D
Front End FPGAs

- FPGAs on detector
 - 86 (+96) pieces
- Receive sensor data
 - 108 LVDS inputs
- 5 Gbit/s outputs
 - 8 optical links
 - ... to counting house
- Switching data between readout boards farms A-D
Front End FPGAs

- FPGAs on detector
 - 86 (+96) pieces
- Receive sensor data
 - 108 LVDS inputs
- 5 Gbit/s outputs
 - 8 optical links
 - ... to counting house
- Switching data between readout boards farms A-D

Diagram:

- Pixel Sensor
 - 800 Mbit/s LVDS in
 x 108
- Front end FPGA
 - 5 Gbit/s optical
- Readout board A
- Readout board B
- Readout board C
- Readout board D
• FPGA readout boards
 o 4 per sub-detector
• 5 Gbit/s optical inputs
 o 16-28 inputs
• 10 Gbit/s optical output
 o 12 outputs to PCs
• Switching network
 o A-D sub-farms
 o One output per PC
Readout Board

- FPGA readout boards
 - 4 per sub-detector
- 5 Gbit/s optical inputs
 - 16-28 inputs
- 10 Gbit/s optical output
 - 12 outputs to PCs
- Switching network
 - A-D sub-farms
 - One output per PC
GPU-PC

- PC with GPU
- 10 Gbit/s Fiber input
 - 8 inputs from sub-detectors
- Data filtering
 - Timing Filter on FPGA
 - Track filter on GPU
 - Data to tape < 100 MB/s
GPU-PC

• PC with GPU
• 10 Gbit/s Fiber input
 o 8 inputs from sub-detectors
• Data filtering
 o Timing Filter on FPGA
 o Track filter on GPU
 o Data to tape < 100 MB/s
GPU-PC

- PC with GPU
- 10 Gbit/s Fiber input
 - 8 inputs from sub-detectors
- Data filtering
 - Timing Filter on FPGA
 - Track filter on GPU
 - Data to tape < 100 MB/s
Timming Filter

- Entire event on PCIe FPGA
- Tile and Fiber data
 - Easy to match
 - Look for three tracks
- Reject data without three hits
 - ... inside time interval
Timing Filter

• Entire event on PCIe FPGA
• Tile and Fiber data
 o Easy to match
 o Look for three tracks
• Reject data without three hits
 o ... inside time interval
Vertex Filter

- Entire event on GPU
- Large target
 - Large spread of muons
 - Easy vertex separation
- Reject data without three tracks
 - ... inside area interval on target
Vertex Filter

- Entire event on GPU
- Large target
 - Large spread of muons
 - Easy vertex separation
- Reject data without three tracks
 - ... inside area interval on target
Summary

- Mu3e has 280M pixels @ >10⁹ muons/s
- >1 Tbit/s data
- 0-suppressed serial data from active pixel sensors
- Switched optical network
- GPU filter farm with optical inputs
Physics Motivation

Lepton flavor violation?

Standard model:
• No lepton flavor violation
Physics Motivation

Lepton flavor violation: $\mu^+ \rightarrow e^+ e^- e^+$

Standard model:
- No lepton flavor violation, but:
 - Neutrino mixing
 - Branching ratio $<10^{-50} \rightarrow$ unobservable
The Mu3e Signal

- $\mu \rightarrow eee$ rare in SM
- Enhanced in:
 - Super-symmetry
 - Grand unified models
 - Left-right symmetric models
 - Extended Higgs sector
 - Large extra dimensions
The Mu3e Background

• Combinatorial background
 o $\mu^+ \rightarrow e^+\nu\nu$ & $\mu^+ \rightarrow e^+\nu\nu$ & e^+e^-
 o many possible combinations

➢ Good time and
➢ Good vertex resolution required
The Mu3e Background

- $\mu^+ \rightarrow e^+ e^- e^+ \nu\nu$
 - Missing energy (ν)
 - Good momentum resolution

Pixel Sensor Links

• Vertex Sensor chips
 o 180 chips
 o 4 LVDS links
 o 800 Mbit/s per link

• Central Silicon Tracker
 o 936 chips
 o 2 LVDS links
 o 800 Mbit/s

• Recurl stations
 o 3744 chips
 o 1 LVDS link
 o 400 Mbit/s
Pixel Sensor Links

- **Vertex Sensor chips**
 - 180 chips
 - 4 LVDS links
 - 800 Mbit/s per link

- **Central Silicon Tracker**
 - 936 chips
 - 2 LVDS links
 - 800 Mbit/s

- **Recurl stations**
 - 3744 chips
 - 1 LVDS link
 - 400 Mbit/s
Front End FPGAs

- FPGAs on detector
 - 86 (+96) pieces
- Receive sensor data
 - 108 LVDS inputs
- 5 Gbit/s outputs
 - 8 optical links
 - ... to counting house
- Switching between readout boards A-D

Optical transceiver FE board
Average Occupancies

- All numbers per frame of 50 ns
- Vertex detector
 - 2 hits per sensor
- Central silicon tracker
 - 0.6 hits per sensor
- Recurl stations
 - 0.13 hit per sensor
- Fiber hodoscope
 - 0.16 hits per fiber
- Timing tiles
 - 0.09 hits per tile
Maximum Occupancies

- All numbers per frame of 50 ns
- Vertex detector
 - 5 hits per sensor
- Central silicon tracker
 - 2 hits per sensor
- Recurl stations
 - 1 hit per sensor
- Fiber hodoscope
 - 0.24 hits per fiber
- Timing tiles
 - 0.14 hits per tile