Development of Dedicated Front-end Electronics for Straw Tube Tracker in PANDA Experiment

Dominik Przyborowski¹, M. Idzik¹, T. Fiutowski¹, P. Salabura², P. Strzempek², J. Tokarz¹

¹ AGH University of Science and Technology ² Jagiellonian University

Topical Workshop on Electronics for Particle Physics 23 - 27 September 2013, Perugia, Italy

1 PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise
- Tail cancellation
- Time resolution
- Time-over-Threshold
- Spectrums
- Baseline

PANDA STT

PANDA STT cross section

Parameters

- Dimensions: 1.5 m length and 10 mm diameter
- ullet Detector capacitance \sim 25 pF
- Ar/CO₂ (10%) gas mixture
- Expected count rate: \sim 800kHz/tube
- ho \sim 5000 channels

1 PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise
- Tail cancellation
- Time resolution
- Time-over-Threshold
- Spectrums
- Baseline

Specification

Features

- CSP with variable gain and time constant
- CR-RC² shaper with variable peaking time
- Ion tail cancellation circuit with trimming
- Baseline stabilized by BLH circuit
- Leading edge discriminator for time and ToT measurements
- Fast LVDS output
- Buffered analog output

1) PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise
- Tail cancellation
- Time resolution
- Time-over-Threshold
- Spectrums
- Baseline

Specification Architecture

Architecture Preamplifier and Shaper

Schematic diagram

Features

- Variable charge gain:
 0.5 4 mV/fC
- Variable preamp time constant:
 - 25 800 ns
- PZC matched to various preamp settings
- $\bullet~1^{st}$ shaper stage with $T_{\rm P}$ in range 10 40 ns

Input transistor

- Drain current = 2 mA
- W/L = $2000\mu/0.35\mu$
- ullet Transconductance pprox 26 mS

Development of Dedicated FEE for STT in PANDA

Architecture Tail Cancellation and Output stages

Schematic diagram

Tail cancellation

- 4 modes of work: CR-RC², only τ_1 , only τ_2 , both
- Trimming time constants:

 $tau_1 \in 3 - 43$ ns (6 bits) $tau_2 \in 18 - 511$ ns (6 bits)

Architecture Baseline Holder

Schematic diagram

Components

- Nonlinear buffer (slew rate limited OTA₀ and C₀)
- High value tunable active resistor for low pass filter (A. Tajalli, Y. Leblebici, E.J. Brauer, Implementing Ultra-High-Value Floating Tunable CMOS Resistors, Electronics Letters, 2008, pp. 349-350)
- Current sink controlling current in last stage feedback

・ロト ・ 同ト ・ ヨト ・ 日

Specification Architecture

Architecture Leading Edge Discriminator

Schematic diagram

Stages

- Two low-gain preamplifing stages
- Latch stage with histeresis
- Self-biased amplifier
- Inverters

Measurement results First prototype basic data

- AMS 0.35µm 2P-4M CMOS Process
- Four channels
- Channel size: 200imes1130 μ m 2
- Power consumption: \sim 15.5 mW/ch + LVDS \sim 12 mW \approx 28 mW/ch
- Peripherals not yet designed, biasing and thresholds setting externally

1 PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise
- Tail cancellation
- Time resolution
- Time-over-Threshold
- Spectrums
- Baseline

Measurement results Pulse shapes

Response slower due to layout parasitics and output buffer performance

D. Przyborowski, et al. Development of Dedicated FEE for STT in PANDA

1) PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise
- Tail cancellation
- Time resolution
- Time-over-Threshold
- Spectrums
- Baseline

Measurement results Linearity and Gain

Channel modes

S-curves measurements

Channel uniformity

Analog buffer output

A D > A A P >

D. Przyborowski, et al. Development of Dedicated FEE for STT in PANDA

1) PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise
- Tail cancellation
- Time resolution
- Time-over-Threshold
- Spectrums
- Baseline

Measurement results Noise

 ${\sf ENC} pprox 1000 \ {\sf e}^-$ for default FE settings $({\cal K}_{pre}=2mV/fC, \ T_P=10ns \ {\sf and} \ C_{in}=25pF)$

D. Przyborowski, et al. Development of Dedicated FEE for STT in PANDA

PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise

Tail cancellation

- Time resolution
- Time-over-Threshold
- Spectrums
- Baseline

Measurement results Tail cancellation

Responses for Fe⁵⁵ X-rays

D. Przyborowski, et al. Development of Dedicated FEE for STT in PANDA

(日) (同) (日) (日) (日)

1) PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise
- Tail cancellation

Time resolution

- Time-over-Threshold
- Spectrums
- Baseline

Measurement results Time resolution

1-2 ns time precision could be obtained by compensating time walk basing on amplitude information

D. Przyborowski, et al. Development of Dedicated FEE for STT in PANDA

PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise
- Tail cancellation
- Time resolution
- Time-over-Threshold
- Spectrums
- Baseline

Measurement results Time-over-Threshold

Results achieved for delta pulse and different FEE settings

D. Przyborowski, et al. Development of Dedicated FEE for STT in PANDA

∃ → (4) ∃

A

1) PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise
- Tail cancellation
- Time resolution
- Time-over-Threshold

Spectrums

Baseline

Measurement results Fe⁵⁵ X-rays spectrums

D. Przyborowski, et al. Development of Dedicated FEE for STT in PANDA

Measurement results Fe⁵⁵ X-rays spectrums

Fe⁵⁵ ToT spectrums for four channels

D. Przyborowski, et al.

(日) (部) (目) (日) Development of Dedicated FEE for STT in PANDA

э

1 PANDA STT

2 Specification and Architecture

- Specification
- Architecture

3 Measurement results

- Pulse shapes
- Linearity and gain
- Noise
- Tail cancellation
- Time resolution
- Time-over-Threshold
- Spectrums
- Baseline

Measurement results

Baseline

Baseline level vs temperature

Summary and plans

Summary

- 1st prototype of STT front-end fully functional
- ullet Variable gain 3 24 mV/fC and peaking time \sim 20 40 ns work well
- ENC $\approx 1000~{\rm e^-}$ for default conditions ($K_{pre}=2mV/fC,~T_P=10ns$ and $C_{in}=25pF)$
- Tail cancellation works and could be trimmed to various types of input signals
- Readout module with 8 ASICs (32 channels) succesfully used in test-beam

Future plans

- Adding DACs for threshold and baseline settings
- New 8 channel prototype in progress submission planned at the end of this year

Improvments

- Preamplifier and shapers redesign to obtain higher speed (meet 10ns of T_P specification)
- BLH modification to minimize baseline dispersion
- Improvements of output buffer

(日) (同) (三) (三)