NaNet: a flexible and configurable low-latency NIC for real-time trigger systems based on GPU

R. Ammendola^(a), A. Biagioni^(b), O. Frezza^(b), G. Lamanna^(c), F. Lo Cicero^(b), <u>A. Lonardo^(b), F.Pantaleo^(c), P.S. Paolucci^(b), D.Rossetti^(b),</u> A. F. Simula^(b), L. Tosoratto^(b), M. Sozzi^(c), P. Vicini^(b) (a) INFN Sezione di Roma Tor Vergata (b) INFN Sezione di Roma (c) INFN Sezione di Pisa

TWEPP-13 Topical Workshop on Electronics for Particle Physics

Perugia, Italy, 23-27 September 2013

ABSTRACT – The adoption of GPUs in the low level trigger systems is currently being investigated in several HEP experiments. While GPUs show a deterministic behaviour in performing computational tasks, data communication is the main source of fluctuations in the response time of such systems. We designed NaNet, a FPGA-based NIC supporting 1/10GbE links and the custom 34 Gbps APElink channel. The design has GPUDirect RDMA capabilities, i.e. is able to inject the input data stream directly into the Fermi/Kepler class GPU(s) memory, and features a network stack protocol offloading engine. We will provide a detailed description of the NaNet hardware modular architecture and a comparative performance analysis on the NA62 RICH detector GPU-based L0 trigger case study using the NaNet board and a commodity GbE NIC. Figures of merit for the system when using the APElink and 10GbE links will also be provided.

The NA62 Trigger and Data Acquisition System

GPUs in the NA62 L0 trigger

Replace custom hardware with a

The RICH Detector Case Study

Mirror Mosaic (17 m focal length)

Rings pattern recognition and fit performed on

NFN

Istituto Nazionale

di Fisica Nucleare

New algorithm ("Almagest") developed for trackless, fast, and high resolution ring fitting.

NA62 RICH LO Trigger Proc Requirements

- □ Network Protocols/Topology: UDP over Point-to-Point (no switches) GbE.
- □ Throughput
 - Input event primitive data rate < 700MB/s (on 7 GbE links)
 - Output of trigger results < 50 MB/s (on 1 GbE link)
- \Box System response latency < 1 ms
 - determined by the size of Readout Board memory

Processor - Processing Latency

Processor – Communication Latency

- GPU MEM GbE GPU 99 μs PCle **- 1**04 μs 🕞 🕨 **—**134 μs 🛏 139 μs 🔲
- □ **lat**_{comm} : time needed to receive input event data from GbE NIC to GPU memory and to send back results from GPU memory to Host memory.
 - 20 events data (1404 byte) sent from Readout board to the GbE NIC are stored in a receiving host kernel buffer. Data are copied from kernel buffer to a user space buffer
 - Data are copied from system memory to GPU memory

buffer storing event data candidated to be passed to higher trigger levels.

- □ **lat**_{proc} : time needed to perform rings pattern-matching on the GPU with input and output data on device memory.
- \Box 10K events = 70 kB
- □ **lat**_{proc} is stable
- \Box max 1/10 of the time budget available

- \Box lat_{comm} = 110 µs avg (4 x lat_{proc}) □ Fluctuations on the GbE component of **lat_{comm}** may hinder the real-time requisite, even at low events count: Min 60 µs, Max 650 µs!
- Ring pattern-matching GPU Kernel is executed, results are stored in device memory.
- Results are copied from GPU memory to system memory (322 bytes -20 results)

NaNet

- □ Problem: lower communication latency and its fluctuations.
- □ Solution:
 - □ Injecting directly data from the NIC into the GPU memory with no intermediate buffering, reusing the APEnet+ GPUDirect RDMA implementation.
 - □ Adding a network stack protocol management offloading engine to the logic (UDP Offloading Engine) to avoid OS jitter effects.

- □ First non-Nvidia device supporting GPUDirect RDMA (2012).
- □ No bounce buffers on host. APEnet+ can target GPU memory with no CPU involvement.
- □ GPUDirect allows direct data exchange on the
- PCIe bus between NIC and GPU, using P2P protocol.
- □ Latency reduction for small messages.

NaNet Architecture and Data Flow

- □ APEnet+ Firmware Customization
- **UDP offload** collects data coming from the Altera Triple-Speed Ethernet Megacore (TSE MAC) and redirects UDP packets into an hardware processing data path.
- □ NaNet Controller encapsulates the UDP payload in a newly forged APEnet+ packet and send it to the RX Network Interface logic.
- □ RX DMA CTRL manages CPU/GPU memory write process, providing hw support for the Remote Direct Memory Access (RDMA) protocol.
- □ Nios II handles all the details pertaining to buffers registered by the application to implement a zero-copy approach of the RDMA protocol (OUT of the data stream).
- □ EQ DMA CTRL generates a DMA write transfer to communicate the completion of the CPU/GPU memory write process.
- □ A Performance Counter is used to analyze the latency of the GbE data flow inside the NIC.

NaNet Benchmark

- □ Latency of a 1472 bytes payload UDP Packet through the NIC hardware path is quite stable (7.3 μ s ÷ 8.6 μ s). □ Sustained Bandwidth ~119.7 MB/s.
- □ In the 1 GbE link L0 GPU-based Trigger Processor prototype the sweet spot between latency and throughput is in the region of 70-100 Kb of event data buffer size, corresponding to 1000-1500 events.

376832

Future Work NaNet-10 (dual 10 GbE)

- □ Implemented on the Altera Stratix IV dev board + Terasic HSMC Dual XAUI to SFP+ daughtercard.
- BROADCOM BCM8727 a dualchannel 10-GbE SFI-to-XAUI transceiver.

References

TSE MAC

UDP OFFLOAD

NaNet CTRL

FIFO HEADER DATA

RX DMA CTRI

EQ DMA CTRL

FIFQ

http://on-demand.gputechconf.com/ gtc/2013/presentations/S3286-Low-Latency-RT-Stream-Processing-System.pdf http://apegate.roma1.infn.it/ mediawiki/index.php/Main_Page http://euretile.roma1.infn.it/ mediawiki/index.php/Main_Page http://na62.web.cern.ch/na62/ Nucl.Instrum.Meth.A662:49-54,2012

Contacts

alessandro.lonardo@roma1.infn.it andrea.biagioni@roma1.infn.it piero.vicini@roma1.infn.it gianluca.lamanna@cern.ch

This project was partially funded by the Euretile european FP7 grant 247846.