Performance of Capacitively Coupled Active Pixel Sensors in 180nm HV-CMOS Technology after Irradiation to HL-LHC Fluences

TWEPP 2013 – Perugia, Italy

Simon Feigl\(^{[1]}\) – CERN, University of Oslo (PhD student)

25 Sep. 2013

on behalf of the ATLAS upgrade HV-CMOS collaboration:

Bonn University, CERN, CPPM Marseille, Geneva University, Göttingen University, Glasgow University, Heidelberg University, LBNL

\(^{[1]}\) Fellowship funded by the European Commission (FP7 – Marie Curie Actions – ITN TALENT)
HEP detector challenges

- requirements on silicon detectors for future colliders are challenging
- environment/specs for HL-LHC tracker detectors:
 - high radiation levels: $\approx 2 \times 10^{16}$ neq/cm2, ≈ 1 GRad (pixel layers)
 - large surface at reasonable cost (strip layers: ≈ 200 m2)
 - fast (40MHz readout)
 - high spatial granularity (≈ 50-100 μm)
HV-CMOS process\(^2\) properties and sensor ideas

- CMOS electronics inside deep n-well (NMOS inside additional p-well): “Smart Diode Array” (SDA)
- low substrate resistivity, high \(N_{\text{eff}}\)
- negative biasing creates depletion zone around n-wells
- charge collection by drift
- signal amplification on sensor chip
- capacitive coupling to readout chip (gluing!)
- small pixel size

<table>
<thead>
<tr>
<th>Technology</th>
<th>Austria Microsystems (AMS) + IBM 350 nm / 180 nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate Resistivity</td>
<td>> 10 Ωcm</td>
</tr>
<tr>
<td>Pixel Size</td>
<td>down to 20 µm</td>
</tr>
<tr>
<td>Depletion Depth</td>
<td>(\approx 10 – 20) µm</td>
</tr>
<tr>
<td>Reverse Bias Voltage</td>
<td>down to (\approx -100) V</td>
</tr>
<tr>
<td>MIP Signal Charge</td>
<td>(\approx 1000) e</td>
</tr>
</tbody>
</table>

[2] AMS H18 / IBM CMOS 7HV Process
Suitability for future tracker detectors

<table>
<thead>
<tr>
<th>Demand for future tracker detectors</th>
<th>Realized by</th>
<th>Key sensor/process property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation hard (electronics)</td>
<td>Deep sub-micron technology</td>
<td>Feature size in deep sub-micron range</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Radiation induced augmentation of doping concentration is insignificant</td>
<td>(N_{\text{eff}} > 1\times10^{14} \text{ /cm}^3), low substrate resistivity</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Short drift time (= little trapping)</td>
<td>Small depletion depth at maximum bias voltage</td>
</tr>
<tr>
<td>Large area at low cost</td>
<td>Cheap production</td>
<td>Industrialized process</td>
</tr>
<tr>
<td>Exceptional spatial resolution</td>
<td>Pixel size down to 20 (\mu)m</td>
<td></td>
</tr>
<tr>
<td>Low material budget</td>
<td>Thinning of sensor possible</td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>Use as monolithic detector</td>
<td>Electronics on sensor</td>
</tr>
<tr>
<td>Fast</td>
<td>Use as hybrid detector with existing fast ROC</td>
<td>Designed to be compatible with ATLAS FE-I4 ROC</td>
</tr>
<tr>
<td>Little cooling</td>
<td>Indications that it can operate at “high” temperatures also after irradiation</td>
<td></td>
</tr>
</tbody>
</table>

HV-CMOS Active Pixel Sensors

Simon Feigl
Suitability for future tracker detectors

<table>
<thead>
<tr>
<th>Demand for Future Tracker Detectors</th>
<th>Realized by</th>
<th>Key Sensor/Process Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation hard (electronics)</td>
<td>Deep sub-micron technology</td>
<td>Feature size in deep sub-micron range</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Radiation induced augmentation of doping concentration is insignificant</td>
<td>(N_{\text{eff}} > 1 \times 10^{14} \text{ /cm}^3), low substrate resistivity</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Short drift time (= little trapping)</td>
<td>Small depletion depth at maximum bias voltage</td>
</tr>
<tr>
<td>Large area at low cost</td>
<td>Cheap production</td>
<td>Industrialized process</td>
</tr>
<tr>
<td>Exceptional spatial resolution</td>
<td>Pixel size down to 20 μm</td>
<td></td>
</tr>
<tr>
<td>Low material budget</td>
<td>Thinning of sensor possible</td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>Use as monolithic detector</td>
<td>Electronics on sensor</td>
</tr>
<tr>
<td>Fast</td>
<td>Use as hybrid detector with existing fast ROC</td>
<td>Designed to be compatible with ATLAS FE-I4 ROC</td>
</tr>
<tr>
<td>Little cooling</td>
<td>Indications that it can operate at “high” temperatures also after irradiation</td>
<td></td>
</tr>
</tbody>
</table>
Suitability for future tracker detectors

<table>
<thead>
<tr>
<th>Demand for future tracker detectors</th>
<th>Realized by</th>
<th>Key sensor/process property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation hard (electronics)</td>
<td>Deep sub-micron technology</td>
<td>Feature size in deep sub-micron range</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Radiation induced augmentation of doping concentration is insignificant</td>
<td>$N_{\text{eff}} > 1 \times 10^{14} \text{ /cm}^3$, low substrate resistivity</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Short drift time (= little trapping)</td>
<td>Small depletion depth at maximum bias voltage</td>
</tr>
<tr>
<td>Large area at low cost</td>
<td>Cheap production</td>
<td>Industrialized process</td>
</tr>
<tr>
<td>Exceptional spatial resolution</td>
<td>Pixel size down to 20 μm</td>
<td></td>
</tr>
</tbody>
</table>
Suitability for future tracker detectors

<table>
<thead>
<tr>
<th>Demand for future tracker detectors</th>
<th>Realized by</th>
<th>Key sensor/process property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation hard (electronics)</td>
<td>Deep sub-micron technology</td>
<td>Feature size in deep sub-micron range</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Radiation induced augmentation of doping concentration is insignificant</td>
<td>(N_{\text{eff}} > 1 \times 10^{14} \text{ /cm}^3), low substrate resistivity</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Short drift time (= little trapping)</td>
<td>Small depletion depth at maximum bias voltage</td>
</tr>
<tr>
<td>Large area at low cost</td>
<td>Cheap production</td>
<td>Industrialized process</td>
</tr>
<tr>
<td>Exceptional spatial resolution</td>
<td>Pixel size down to 20 (\mu)m</td>
<td></td>
</tr>
<tr>
<td>Low material budget</td>
<td>Thinning of sensor possible</td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>Use as monolithic detector</td>
<td>Electronics on sensor</td>
</tr>
<tr>
<td>Fast</td>
<td>Use as hybrid detector with existing fast ROC</td>
<td>Designed to be compatible with ATLAS FE-I4 ROC</td>
</tr>
<tr>
<td>Little cooling</td>
<td>Indications that it can operate at “high” temperatures also after irradiation</td>
<td></td>
</tr>
</tbody>
</table>
Suitability for future tracker detectors

<table>
<thead>
<tr>
<th>Demand for future tracker detectors</th>
<th>Realized by</th>
<th>Key sensor/process property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation hard (electronics)</td>
<td>Deep sub-micron technology</td>
<td>Feature size in deep sub-micron range</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Radiation induced augmentation of doping concentration is insignificant</td>
<td>(N_{\text{eff}} > 1 \times 10^{14} \text{ /cm}^3), low substrate resistivity</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Short drift time (= little trapping)</td>
<td>Small depletion depth at maximum bias voltage</td>
</tr>
<tr>
<td>Large area at low cost</td>
<td>Cheap production</td>
<td>Industrialized process</td>
</tr>
<tr>
<td>Exceptional spatial resolution</td>
<td>Pixel size down to 20 (\mu \text{m})</td>
<td></td>
</tr>
<tr>
<td>Low material budget</td>
<td>Thinning of sensor possible</td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>Use as monolithic detector</td>
<td>Electronics on sensor</td>
</tr>
<tr>
<td>Fast</td>
<td>Use as hybrid detector with existing fast ROC</td>
<td>Designed to be compatible with ATLAS FE-I4 ROC</td>
</tr>
<tr>
<td>Little cooling</td>
<td>Indications that it can operate at “high” temperatures also after irradiation</td>
<td></td>
</tr>
</tbody>
</table>
Suitability for future tracker detectors

<table>
<thead>
<tr>
<th>Demand for future tracker detectors</th>
<th>Realized by</th>
<th>Key sensor/process property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiation hard (electronics)</td>
<td>Deep sub-micron technology</td>
<td>Feature size in deep sub-micron range</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Radiation induced augmentation of doping concentration is insignificant</td>
<td>$N_{\text{eff}} > 1 \times 10^{14} \text{ /cm}^3$, low substrate resistivity</td>
</tr>
<tr>
<td>Radiation hard (bulk)</td>
<td>Short drift time (= little trapping)</td>
<td>Small depletion depth at maximum bias voltage</td>
</tr>
<tr>
<td>Large area at low cost</td>
<td>Cheap production</td>
<td>Industrialized process</td>
</tr>
<tr>
<td>Exceptional spatial resolution</td>
<td>Pixel size down to 20 μm</td>
<td></td>
</tr>
<tr>
<td>Low material budget</td>
<td>Thinning of sensor possible</td>
<td></td>
</tr>
<tr>
<td>Fast</td>
<td>Use as monolithic detector</td>
<td>Electronics on sensor</td>
</tr>
<tr>
<td>Fast</td>
<td>Use as hybrid detector with existing fast ROC</td>
<td>Designed to be compatible with ATLAS FE-I4 ROC</td>
</tr>
<tr>
<td>Little cooling</td>
<td>Indications that it can operate at “high” temperatures also after irradiation</td>
<td></td>
</tr>
</tbody>
</table>
Prototype Sensors

- First prototypes in 350nm technology yielded promising results (see backup slides)
- 180nm Prototype sensors: HV2FEI4v1 (1st generation, rad-soft electronics design) HV2FEI4v2 (2nd gen, rad-hard)
 - designed by Ivan Perić (University of Heidelberg)
 - 60 columns x 24 rows
 - pixel size 33x125 μm\(^2\)
 - ASIC designed to fit FEI4 readout chip
 → use of highly optimized readout electronics
 - on-pixel electronics: amplifier, discriminator, TuneDACs etc.
 - IO bond pads for different operation modes

![Prototype Sensor Diagram]
Prototype Sensors

- First prototypes in 350nm technology yielded promising results (see backup slides)
- 180nm Prototype sensors: HV2FEI4v1 (1st generation, rad-soft electronics design)
 - HV2FEI4v2 (2nd gen, rad-hard)
 - designed by Ivan Perić (University of Heidelberg)
 - 60 columns x 24 rows
 - pixel size 33x125 μm\(^2\)
 - ASIC designed to fit FEI4 readout chip
 → use of highly optimized readout electronics
 - on-pixel electronics: amplifier, discriminator, TuneDACs etc.
 - IO bond pads for different operation modes
- Standalone measurements
 - investigation of performance of sensor electronics
 - irradiation effects
- CCPD: \textbf{Capacitively Coupled Pixel Detector}
 - HV2FEI4 glued onto ATLAS pixel front-end chip (FE-I4)
 - proof of principle
 - irradiation effects
- Strip-Readout
HV2FEI4v1 (1st Generation)

- electronic elements from standard library (not radiation hard)
- physics events clearly visible
- 90Sr and 55Fe-spectra recorded

Discriminator Output

Sr-90 spectrum

entries

Fe-55 spectrum

entries

ToT

ToT

ATLAS CERN
HV2FEI4v1 – Ionizing Radiation Effects

- 90Sr-spectrum still visible after 80 Mrad proton irradiation (but visible effects)
- particle signals observed up to 200 Mrad
- preamp worked after 200Mrad, discriminator died
- reasons for signal loss:
 - large amplifier gain drop
 - large leakage current
HV2FEI4v2 (2nd Generation)

- rad-hard design
- different pixel types:
 - “normal”: guard rings implemented
 - “rad-hard”: circular transistors (→ larger capacitance → lower gain)
- 55Fe- and 90Sr-spectra measured
HV2FEI4v2 (2nd Generation)

- rad-hard design
- different pixel types:
 - “normal”: guard rings implemented
 - “rad-hard”: circular transistors (→ larger capacitance → lower gain)
- 55Fe- and 90Sr-spectra measured

![Threshold dispersion graph]

- threshold tuning implemented

![Signal vs. Counts graph]
HV2FEI4v2 (2nd Generation)

- rad-hard design
- different pixel types:
 - “normal”: guard rings implemented
 - “rad-hard”: circular transistors (→ larger capacitance → lower gain)
- 55Fe- and 90Sr-spectra measured

- threshold tuning implemented
- noise ≈ 75e
• X-ray irradiation to 862 Mrad, 2 hours of annealing at 70°C after each 100Mrad, powered on during irradiation
• amplifier gain loss in rad-hard pixels fully recovered after optimizing chip settings

Radiation effects on preamplifier gain

rad-hard pixels

simple pixels

annealing

re-optimization of settings (irradiation stopped at 862Mrad)
• X-ray irradiation to 862 Mrad, 2 hours of annealing at 70°C after each 100Mrad, powered on during irradiation
• amplifier gain loss in rad-hard pixels fully recovered after optimizing chip settings
• noise increase on partially rad-hard pixel: 90e → 150e (at room temperature)
• amplifiers work with reduced bias current (2µA instead of 5µA)

Radiation effect on noise level

Before irradiation

- Noise before irradiation: 90e

After irradiation

- Noise after irradiation: 150e
• on-sensor signal amplification
 – capacitive coupling possible
 – gluing instead of bump-bonding
 → fast & cheap production
CCPD – Capacitively Coupled Pixel Detector

- on-sensor signal amplification
 - capacitive coupling possible
 - gluing instead of bump-bonding
 → fast & cheap production

- readout with FE-I4 / sub-pixel structure
 - three sub-pixels connected to one readout pad
 - position encoding in signal height
 → improves spatial resolution with respect to standard FE-I4 cell
CCPD Setup

HV-CMOS Active Pixel Sensors

Simon Feigl
CCPD (HV2FEI4v1 on FEI4) – It Works

- ^{90}Sr-source
- Readout by FEI4 (STcontrol)
- w/o source: 0 rate
- w/ source: kHz rate
• ionizing radiation (protons, X-ray) → affects mainly electronics
• non-ionizing radiation (neutrons) → affects mainly bulk silicon
HV2FEI4v1 – Non-Ionizing Radiation Effects (Bulk Damage)

- Ionizing radiation (protons, X-ray) → affects mainly electronics
- Non-ionizing radiation (neutrons) → affects mainly bulk silicon
- Presumably radiation hard

- Irradiation of HV2FEI4v1 to 1×10^{15} and 1×10^{16} neq/cm2 in Ljubljana
- Leakage current behaves as expected

Leakage current at room temperature

<table>
<thead>
<tr>
<th>Reverse bias voltage [V]</th>
<th>Leakage current [uA]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

- Neutrons
- Room temperature
ionizing radiation (protons, X-ray) → affects mainly electronics
non-ionizing radiation (neutrons) → affects mainly bulk silicon
presumably radiation hard

irradiation of HV2FEI4v1 to 1e15 and 1e16 neq/cm² in Ljubljana
leakage current behaves as expected
sensor works even at room temperature!
CCPD – Particle Detection

- first measurements with scintillator trigger
- LVL1-distribution clearly show that we really see physics
- rate goes up with -HV, saturation still to be seen
- further measurements will include higher bias voltage

after $1e16$ neq/cm2!
CCPD – Sub-Pixel Encoding

- sub-pixel encoding works on single pixel cells
- individual sub-pixels well separated in ToT-spectrum
CCPD – Sub-Pixel Encoding

- sub-pixel encoding works on single pixel cells
- individual sub-pixels well separated in ToT-spectrum
• sub-pixel encoding works on single pixel cells
• individual sub-pixels well separated in ToT-spectrum

FE-I4 pixels

HVCNOMS pixels

Signal transmitted capacitively

Bias A

Bias B

Bias C

Sub-Pixel 1

Sub-Pixel 2

Sub-Pixel 3

unirradiated sensor!
CCPD – Test Beam

- data taken, but problems with reconstruction (DUT data stream sync problems during data taking)
- HV-CMOS worked in test beam!
- no cooling!
- next studies: efficiency comparison unirrad./irrad, spatial resolution

stay tuned!
CCPD - Outlook

- performance of sensors has to be measured systematically:
 - cooled sensors
 - rate and leakage current vs. bias voltage
 - efficiency
 - spatial resolution

- 2nd generation sensors ready → CCPDs to be tested

- neutron irradiation of 2nd generation sensors
• performance of sensors has to be measured systematically:
 – cooled sensors
 – rate and leakage current vs. bias voltage
 – efficiency
 – spatial resolution

• 2nd generation sensors ready → CCPDs to be tested

• neutron irradiation of 2nd generation sensors

• optimization of pixel electronics and geometry

• engineering run (full size sensors suitable for large scale HEP detectors)
Strip Readout

- Pixels are summed to “virtual strips”
- Readout with analogue or digital readout chips
- Hit position encoded again in pulse height
Strip Readout

- Pixels are summed to “virtual strips”
- Readout with analogue or digital readout chips
- Hit position encoded again in pulse height

- pixel hitmap reconstructed from strip information (here: shadow of a wire)

cheap pixel sensor used as strip detector → 200m² affordable!
Outlook on HV-CMOS technology for sensors

- HV-CMOS processes enable the fabrication of active sensors with many advantageous properties needed for HL-LHC application and beyond:
 - cheap & fast production
 - rad-hard
 - high spatial resolution
 - fast
 - thin
 - low bias voltage
- first results look promising with regard to withstanding 1×10^{16} neq/cm2!
Outlook on HV-CMOS technology for sensors

- HV-CMOS processes enable the fabrication of active sensors with many advantageous properties needed for HL-LHC application and beyond:
 - cheap & fast production
 - rad-hard
 - high spatial resolution
 - fast
 - thin
 - low bias voltage
- first results look promising with regard to withstanding 1×10^{16} neq/cm2!
- development of prototypes/applications ongoing:
 - pixel
 - strip
 - MAPS: Mu3e at PSI (180nm HV-CMOS MAPS), PANDA luminosity monitor at GSI
 - ideas to use 65 and 130nm
Outlook on HV-CMOS technology for sensors

- HV-CMOS processes enable the fabrication of active sensors with many advantageous properties needed for HL-LHC application and beyond:
 - cheap & fast production
 - rad-hard
 - high spatial resolution
 - fast
 - thin
 - low bias voltage

- first results look promising with regard to withstanding 1×10^{16} neq/cm2!

- development of prototypes/applications ongoing:
 - pixel
 - strip
 - MAPS: Mu3e at PSI (180nm HV-CMOS MAPS), PANDA luminosity monitor at GSI
 - ideas to use 65 and 130nm

- final goal: full-size detector for large scale HEP tracking detectors
Thank you!
Backup Slides
Development in 350nm Technology

- used AMS 0.35µm technology
- Several prototypes have been designed
- Three detector types:
 - A) Monolithic detector with intelligent CMOS pixels
 - Pixel electronic is rather complex – CMOS based charge sensitive amplifier, usually discriminator, threshold tune…
 - B) Monolithic detector with 4-PMOS-transistor pixel and rolling shutter RO
 - C) Capacitively coupled hybrid detectors
 - Good results, >98% efficiency in test-beam, high radiation tolerance
Pixel Schematics

normal pixel

HV-CMOS Active Pixel Sensors

Simon Feigl