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The CLIC project 
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The Compact Linear Collider (CLIC) is 
a study for a high-energy and high-
luminosity collider 

 

 e+e- collider 

 

 Can be used to determine 
standard model parameters with 
a higher precision than proton 
colliders 

 

 Allows the detection of new 
particles and the testing of 
models as supersymmetry and 
Higgs strong interactions 

 

 3 TeV  48 km long! 



The CLIC beam 
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 Bunch crossings every 
0.5 ns in trains of 
156 ns 

 Bunch trains every 20 
ms  small duty 
cycle 

 Air cooling  low 
power consumption 

 Its vertex detector 
needs high spatial 
accuracy  small 
pixels! 
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Timing requirements 

 312 bunch crossings in 156 ns and a high 

background rate Event timestamp 

 Time of Arrival measurement with 10 ns accuracy is 

required to discriminate tracks 

 

 High spatial (sub-pixel) resolution  Charge 

measurement 

 At least 4-bit Time-over-Threshold is needed 
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CLICpix 

 CLICpix is a hybrid pixel detector to be used as 
the CLIC vertex detector 

 Main features: 

 small pixel pitch (25 μm),  

 Simultaneous TOA and TOT measurements 

 Power pulsing 

 Data compression 

 

 A demonstrator of the CLICpix architecture with 
an array of 64x64 pixels has been submitted 
using a commercial 65 nm technology and tested  

 The technology used for the prototype has been 
previously characterized and validated for HEP 
use and radiation hard design* 

 
*S. Bonacini, P. Valerio et al, Characterization of a commercial 65 nm CMOS 
technology for SLHC applications, Journal of Instrumentation, 7(01):P01015–
P01015, January 2012 
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“Moore’s law” for pixel detectors 
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A simple block diagram 

Data IN 
Data OUT 

Analog part of adjacent pixels 

share biasing lines. Digital part 

is shared between each two 

adjacent pixels 

 

 

  

 

 

64x64 pixel matrix 

 Chip periphery 
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Pixel architecture 

 The analog front-end shapes photocurrent pulses and compares 
them to a fixed (configurable) threshold 

 Digital circuits simultaneously measure Time-over-Threshold and 
Time-of-Arrival of events and allow zero-compressed readout 
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Analog front-end diagram 

IKRUM/2 

MFB1 

CF 

CTEST 

MFB2 

MLEAK 

CLEAK 

CL 

IKRUM 

Vout Vin 
Idet 

VFBK 

Vdout 

CBUF 

gm 

Vth 

DAC 

Vtest 

12 

 The front-end uses the Krummenacher architecture, with a single ended preamp, a 
two-stage discriminator and a binary weighted 4-bit DAC for threshold 
equalization 

 Switches are included to handle pulses of both polarities and to disconnect the 
test capacitor when it is not used 



Pixel logic summary 

Technology 
65 nm (High-Vt Standard Cells), 

Asynchronous State Machines 

Pixel size 

25x25 µm 

- 25x14 µm (Analog) 

- 25x11 µm (Digital) 

Acquired Data TOT and TOA 

Counter Depth (LFSR) 
4 bits TOT + 4 bits TOA (or 

counting, for calibration) 

Target Clock Speed 
100 MHz (acquisition) 

320 MHz (readout) 

Data type 

Full Frame 

Zero compression (pixel, super-

pixel and column skipping) 

Acquisition Type Non-continuous 

Power Saving 
Clock gating (digital part), 

Power gating (analog part) 
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Super-Pixels 

 In CLICpix, pixels are clustered in 2x8 

arrays (Super-Pixels) 

 

 Area reduction because some of the 

electronics can be shared (clock 

distribution tree, biasing lines) 

 

 Additional compression layer 

 

 The clock is distributed along each 

column exploiting the delays of 

buffers to give each pixel a clock 

signal with a different phase 
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Data compression 

 Two different compression schemes were evaluated 

 Zero-suppression 

 Only pixels with data are read out 

 Data have an address associated to it 

 Zero-compression 

 All pixels are read out 

 Pixels have a “hit-flag” bit allowing to skip data stored 

in pixels which were not hit 

 Additional compression layers (superpixels, columns) 

can be added 
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Readout Architecture Comparison 
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Expected 
occupancy 

Zero-suppression (Data+Address) 

Zero-compression (Pixel only) 

Zero-compression (Pixel, Superpixel and Column) 

 Readout time for 
different 
architectures have 
been compared. 

 320MHz readout 
clock (DDR) 

 Packet-based 
readout (red line), 
zero-compression with 
pixel, superpixel and 
column skipping 
(dotted black line), 
zero-compression with 
only pixel skipping 
(yellow line) 



Super-Pixel Layout 
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Periphery and end-of-column 

 A periphery logic with a command register is implemented to control all the 

features of the chip 

 

 Columns are read serially and programmed in parallel 

 

 DACs to generate reference voltages are included. An external absolute 

voltage reference is needed due to the lack of a band-gap block. 

 

 A power pulsing and clock gating scheme has been implemented allowing to 

reduce the average power consumption to less than 50 mW/cm2 (allowing 

the use of air cooling) 
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Functional tests 

Using a test setup with 

an FPGA development 

board, automated tests 

could be programmed 
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All the chip features were tested successfully: 

 Configuration data can be sent to the pixel matrix and read back correctly 

 Pixel configuration (calibration DAC code, pixel masking, test pulse injection) 

works 

 Test pulses can be injected to selected pixels and TOT and TOA counters work 

 Zero compressed acquisition and readout routines produce the expected result 

and the output stream can be decoded correctly 



Periphery blocks tests 

 Periphery DACs were tested 

 Their characteristics were found to be 
consistent with simulations within the 
uncertainties due to process variations 

 The variation of power consumption 
changing the biasing currents of 
analog blocks was measured and it 
matched expected values 

 The power pulsing control system works 
according to specifications reducing the 
power consumption by more than one 
order of magnitude 

 The power-on and power-off times can 
be programmed 

 The front-end wake-up time is less than 
15 µs 
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TOT measurements 
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 TOT gain variation is 4.2% r.m.s. 

 Tested for nominal feedback current 

 Corners have lower TOT gain 

 TOT integral non-linearity for different 
feedback currents was tested 

 TOT dynamic range matches simulations 

Feedback current 



Threhsold equalization 

 Routines for 
equalizing the 
threshold using the 
pixel calibration 
DACs were 
implemented, 
finding the noise 
floor for all pixels 

 Calibrated spread 
is 0.89 mV (about 
22 e- assuming a 
10 fF test 
capacitance) 
across the whole 
matrix 
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Noise characterization 

 Threshold scans through 
the baseline voltage were 
used to calculate the noise 
floor 

 There is a small pattern 
effect due to the different 
routing of pixels in the 
double columns 

 Average noise is 1.96 mV 
r.m.s. (about 51 e- 

assuming a 10 fF test 
capacitance)  
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Other analog tests 

 Noise and gain 

measurements were 

performed on some pixels 

injecting test pulses, with 

results closely matching 

simulations 

 Results are to be 

considered preliminary, 

noise sources are being 

investigated 
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Digital power consumption 
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 Change in power consumption between acquisition, 
readout and idling can be seen 

 Total power consumption of the digital part is lower than 4 
mW during readout 

 Average power consumption of the digital part is lower 
than 1 mW 



Measurement summary 

  Simulations Measurement 

Rise time 50ns 

TOA Accuracy < 10 ns < 10 ns 

Gain 44 mV/ke- 40 mV/ke- 

Dynamic Range 
up to 40 ke-  

(configurable) 

up to 40 ke-  

(configurable) 

Non-Linearity (TOT) < 8% at 40 ke- < 4% at 40 ke- 

Equivalent Noise (no 

sensor capacitance) 
~60 e- 

~51 e- (with 10% 

variation r.m.s.) 

DC Spread 

(uncalibrated) 
σ = 160 e- σ = 128 e- 

DC Spread (calibrated) σ = 24 e- σ = 22 e- 

Analog pixel power 

consumption (while ON) 
6.5 μW 7 μW 
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Measurements 

expressed in 

electrons depend 

on capacitance 

values. A nominal 

value of 10 fF was 

assumed here for 

the test capacitor 
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 A CLICpix prototype has been designed, fabricated 
and tested (characterization is still ongoing) using a 
commercial 65 nm CMOS technology 

 

 Main features include 25 μm pixel pitch, simultaneous 
ToT and ToA measurements and power pulsing 
capabilities 

 

 Measurements closely match simulations 

 

 Ideas implemented and tested on this prototype can be 
used in future projects 

 

Conclusions 
29 
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Timing measurements 

 Time over Threshold 
measures the time the 
input pulse stays over a 
fixed threshold 

 It is directly proportional to 
the amount of charge 
deposited by a particle 
and thus its energy 

 

 Time of Arrival measures 
the relative time in which 
the pulse was acquired 

 It is used to identify 
different particle tracks in 
a noisy background 
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Pixel block diagram 
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 The front-end uses the Krummenacher architecture, with a single 
ended preamp, a two stage discriminator and a 4-bit DAC 

 Switches are included to handle pulses of both polarities and to 
disconnect the test capacitor when it is not used 



Premplifier schematic 
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Feedback network schematic 
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TOT linearity 

 The frontend has a 

linear TOT throughout 

all its the dynamic 

range (amplitude 

saturates with much 

lower charges) 

 Uncertainty in the TOT 

count (mainly due to 

mismatch of the Ikrum 

mirror) is limited to 

one LSB of the counter 
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ENC (as a function of input C) 

 The capacitances of 

the pad and the 

frontend are already 

included as part of the 

extracted parasitics 

 The frontend show a 

linear increse of the 

rms noise by 

increasing the 

detector/bonding 

capacitance 
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Time walk 

 The time walk is 
reduced for high input 
charges 

 Low charge inputs can 
produce pulses with a 
TOT count of 0. The 
TOT LSB is 2.8 ke-. 

 The TOA can be 
corrected by using the 
TOT information. Two or 
three bins are enough 
to have a 10 ns 
resolution for all input 
pulses but those the 
with a TOT of 0. 
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Polarity effect 

 The front-end produces 
pulses with a different 
shape for different 
input polarities 

 The effect is due to 
having a small 
compensation capacitor 
(for area issues) 

 Pulses with different 
polarities but same 
energy will give 
different TOT 
measurements. This can 
be compensated by 
changing the Ikrum 
value 
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Front-end stability 

 Open-loop Bode 

diagram was 

simulated (including 

parasitics) opening the 

circuit at the input of 

the preamplifier 

 Phase margin is 

approx. 50 deg 
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Effect of Ikrum on TOT 

 The plot shows the 

effect of Ikrum on the 

TOT for a 5 ke- pulse. 
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Discriminator schematic 
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Calibration DAC schematic 
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Threshold variation due to DAC output 

 The plot is obtained 

by making a DC 

sweep of the 

discriminator input and 

checking when its 

output trips 
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Equalization DAC INL 

 INL of the DAC was 

simulated using 

Montecarlo simulations 

with mismatch models 

(Montecarlo runs with 

process variations are 

not possible with 

TSMC PDK). 

IN
L 

(L
S
B
) 

10-3 

45 



Analog Pixel Layout 
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Power pulsing 

 The specific application of the chip requires a very low duty cycle (the chip will 
acquire data for 156 ns every 20 ms), leaving the possibility to periodically turn 
off and on parts of the chip 

 

 The main contribution to the power consumption is the analog front-end, which 
would use ~2W/cm2 if run continuously. 

 

 A power pulsing scheme has been implemented allowing to reduce the average 
power consumption to less than 50 mW/cm2 (allowing the use of air cooling) 

 

 In order to make the requirements for the power supply more relaxed, each 
column can be turned on at a different time to gradually turn on and off the 
chip 

 

 Power pulsing is activated by an external signal and it switches the biasing of 
the structures which use the most power to a low-power state. During this power 
saving state the analog power can be switched off entirely 
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Power pulsing 

 The specific application of the chip requires a very little duty cycle (the chip will acquire 
data for 156 ns every 20 ms), leaving the possibility to periodically turn off and on parts 
of the chip 

 

 The analog part of the pixel uses too much power by itself. It’s necessary to implement a 
controlled power down when the chip is not acquiring data 

 

 In order to make the requirements for the power supply more relaxed, each column can 
be turned on at a different time to gradually turn on each chip 
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End-of-column functionality 

 One end-of-column per each two columns (as they share the digital part) 

 

 The functionalities of the block are managing the clock gating, keep track of the 
data during readout and provide the array with configuration data. 

 

 The readout of the chip is done serially, one “double column” at a time. Each 
pixel shifts the data to the next one making the counters work as a long shift 
register, using a fast readout clock (320 MHz) 

 

 The counters are connected together (and to the pixels directly above and 
below) to act as a single shift register during the data readout phase. 

 

 Each end-of-column has a state machine that counts the number of pixels being 
read out (with multiple counters, taking into account skipped pixels and skipped 
clusters) to be able send a start-reading signal to the next column 
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Other analog tests 
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