

Development of novel aluminum-based stabilizer solutions for superconducting cables Applicable to future detector magnets

S.A.E. Langeslag

B. Curé, S. Sgobba, A. Dudarev and H.H.J. ten Kate

20 November 2013

WAMAS Workshop on Advanced Materials & Surfaces; Wednesday, 20th of November 2013, 11h00

Large bore, High-field Magnets

Stabilized Superconducting cable

Stabilized Superconducting cable

UNIVERSITY OF TWENTE.

The self-supporting magnet structure needs to sustain a large hoop force as a result of the high peak magnetic field.

This requires for the conductor to exhibit challenging mechanical properties.

Goal is to develop a prototype for a 60 kA critical current, at 5 T class stabilized superconductor, operating at 4.2 K.

→ Leading us to the development of a conductor with a ~2000 mm² cross-sectional area.

The stabilizer should feature a yield strength of >120 MPa at 4.2 K and an RRR of >500.

Reinforced Stabilizer

UNIVERSITY OF TWENTE.

- Hybrid solution
 - preservation of conductivity properties
 - mechanical reinforcement
 - homogeneous deformation
 - conductor manufacturing

- Microalloying
 - preservation of conductivity properties
 - mechanical reinforcement
 - homogeneous deformation
 - conductor manufacturing

CMS (left) & ATLAS central solenoid (right) conductor

Preservation of Conductivity

UNIVERSITY OF TWENTE.

- Doped Aluminum
 - low solid solubility

- Mechanical Alloying
 - particle or whisker reinforced

Mean free path – Electrical and Thermal resistivity
20 November 2013

Co-extrusion of Al-Ni stabilized conductor

UNIVERSITY OF TWENTE.

Scale-up towards a prototype for a 60 kA at 5 T, 4.2 K class conductor

Co-extrusion of a large 40-strand Nb-Ti/Cu superconducting cable with a precipitation type Al-0.1 wt%Ni stabilizer.

Microalloying with Ni contributes to the strength of the stabilizer while avoiding significant degradation in RRR due to its low solid solubility in Al.

The Al-0.1wt%Ni material was made available by KEK, Tsukuba, Ibaraki (J).

S. A. E. Langeslag, B. Curé, S. Sgobba, A. Dudarev & H. H. J. ten Kate;

IEEE Transactions on Applied Superconductivity, vol. 23, no. 3, 4500504, 2013.

Al-0.1wt.%Ni stabilized ATLAS central solenoid conductor (top) & scaled-up Al-0.1wt.%Ni stabilized prototype conductor (bottom).

Co-extrusion of Al-Ni stabilized conductor

UNIVERSITY OF TWENTE.

Nexans Cortalliod (CH); Extrusion press

Continuous co-extrusion on a 3800 ton press at Nexans, Cortaillod (CH).

Using punch and die of the ATLAS BT conductor (57 x 12 mm²).

Cable preheated and brushed to ensure good bonding.

Temperature remained at a constant 400°C, while the pressure was increased with 20-25% with the introduction of Al-0.1wt%Ni, leading to a 1.5 m/min extrusion speed.

Co-extrusion of Al-Ni stabilized conductor

UNIVERSITY OF TWENTE.

Leading to 200 m of 5N-Al coextruded conductor and 100 m of Al-0.1wt%Ni co-extruded conductor.

Multi-pass uni-directional work hardening has been applied to increase the mechanical properties of the as-extruded temper.

Spool (3 m diameter) with co-extruded conductor

UNIVERSITY OF TWENTE.

TABLE 1. Properties of co-extruded 5N-Al and Al-0.1wt%Ni as a result of various cross-section reductions due to multi-pass rolling

	Mat.	RRR	$egin{aligned} \mathbf{R}_{p0.2} \ [\mathbf{MPa}] \end{aligned}$	\mathbf{R}_m [MPa]
As-extruded	5N-Al	2814	22	40
	Al-0.1wt%Ni	1191	26	53
20% single pass cold-rolled	5N-Al	1901	42	47
	Al-0.1wt%Ni	879	48	56
30% single pass cold-rolled	5N-Al	1464	49	53
	Al-0.1wt%Ni	673	58	63

RRR in relation to 0.2% yield strength for the two extruded stabilizer materials at the various cold-worked states:

Roughly linear interaction between RRR and $R_{\rm p0.2}$

 $R_{p0.2}$ and R_m are 0.2% yield strength and ultimate tensile strength respectively.

UNIVERSITY OF TWENTE.

TABLE 1. Properties of co-extruded 5N-Al and Al-0.1wt%Ni as a result of various cross-section reductions due to multi-pass rolling

	Mat.	RRR	$egin{aligned} \mathbf{R}_{p0.2} \ [\mathbf{MPa}] \end{aligned}$	\mathbf{R}_m [MPa]
As-extruded	5N-Al	2814	22	40
	Al-0.1wt%Ni	1191	26	53
20% single pass cold-rolled	5N-Al	1901	42	47
	Al-0.1wt%Ni	879	48	56
30% single pass cold-rolled	5N-A1	1464	49	53
	Al-0.1wt%Ni	673	58	63

RRR in relation to 0.2% yield strength for the two extruded stabilizer materials at the various cold-worked states:

Roughly linear interaction between RRR and $R_{\rm p0.2}$

Higher workability of the Al-0.1wt%Ni alloy

Increase in $R_{p0.2}$ with use of work hardening has a less detrimental effect on the RRR of the Al-Ni alloy.

Work hardening; Bi-directional rolling

UNIVERSITY OF TWENTE.

Bi-directional (Turks head) rolling was preformed on a 50 ton DEM rolling mill at Criotec, Chivasso (I).

A set-up used for ITER cable-inconduit production.

Rolling was conducted on 1.5 m samples, width constrained to preserve cable integrity and a realistic aspect ratio.

The rolling process was made possible by ENEA, Rome (I).

UNIVERSITY OF TWENTE.

TABLE 2. Properties of co-extruded Al-0.1wt%Ni as a result of various cross-section reductions due to bi-directional rolling

Illia.	Temp. [K]	RRR	$egin{aligned} \mathbf{R}_{p0.2} \ [\mathbf{MPa}] \end{aligned}$	\mathbf{R}_m [MPa]
As-extruded	293	1191	26	53
	4.2	- 0	57	303
20% single pass cold-rolled	293	656	62	67
1 1	4.2	-	127	376
30% single pass cold-rolled	293	404	75	81
	4.2	-	157*	496

High workability of Al-0.1wt%Ni alloy in a production-scale work-hardening sequence.

Results for the co-extruded Al-0.1wt.%Ni conductor subjected to various work-hardening processes.

^{*} deduced from two measurements

UNIVERSITY OF TWENTE.

TABLE 2. Properties of co-extruded Al-0.1wt%Ni as a result of various cross-section reductions due to bi-directional rolling

THE	Temp. [K]	RRR	$egin{aligned} \mathbf{R}_{p0.2} \ [\mathbf{MPa}] \end{aligned}$	\mathbf{R}_m [MPa]
As-extruded	293	1191	26	53
	4.2	- 8	57	303
20% single pass cold-rolled	293	656	62	67
	4.2	-	127	376
30% single pass cold-rolled	293	404	75	81
	4.2	-	157*	496

High workability of Al-0.1wt%Ni alloy in a production-scale work-hardening sequence.

Significant increase in R_{p0.2} at 4.2 K

Results for the co-extruded Al-0.1wt.%Ni conductor subjected to various work-hardening processes.

20 November 2013

^{*} deduced from two measurements

UNIVERSITY OF TWENTE.

TABLE 2. Properties of co-extruded Al-0.1wt%Ni as a result of various cross-section reductions due to bi-directional rolling

Illia.	Temp. [K]	RRR	$egin{aligned} \mathbf{R}_{p0.2} \ [\mathbf{MPa}] \end{aligned}$	\mathbf{R}_m [MPa]
As-extruded	293	1191	26	53
	4.2	- 0	57	303
20% single pass cold-rolled	293	656	62	67
1 1	4.2	-	127	376
30% single pass cold-rolled	293	404	75	81
	4.2	-	157*	496

High workability of Al-0.1wt%Ni alloy in a production-scale work-hardening sequence.

Significant increase in R_{p0.2} at 4.2 K

Roughly linear interaction between RRR and $R_{\text{p0.2}}$

~120 MPa at 4.2 K when ~19% cold-reduced, maintaining an RRR of ~700.

Results for the co-extruded Al-0.1 WT.%Ni conductor subjected to various work-hardening processes.

^{*} deduced from two measurements

Single-pass vs. Multi-pass rolling

UNIVERSITY OF TWENTE.

Distinct decrease in mechanical properties with number of cold-roll passes.

Process of recovery of dislocation pinning points in between passes in this dilute Al-Ni alloy.

Single-pass vs. Multi-pass rolling

UNIVERSITY OF TWENTE.

RRR plotted as function of Rp0.2 for the various cold-worked states, for the different work-hardening processes.

In collaboration with the industry a successful co-extrusion of a record-size, ~700 mm², Al-0.1wt%Ni stabilized superconductor has been achieved.

The expected increase in $R_{p0,2}$ with dilute Ni alloying is confirmed.

The Al-0.1wt%Ni material exhibits a higher workability, and shows a less detrimental effect of the work hardening on the conductivity characteristics with respect to 5N-Al.

the enhancement of the **mechanical properties at 4.2 K is promising** for future detector application.

The material characteristics of Al-0.1wt%Ni are subject to both work-hardening amount as well as certain parameters of the work-hardening process.

→ An **optimal work-hardening sequence** needs to be developed.

Applications

Applications

Applications

Thank you for your kind attention

Response to Partial Annealing

UNIVERSITY OF TWENTE.

Clear temperature range where recovery of lattice defects takes place; reversing work-hardening.

- → 470 K 530 K for 20% reduced
- → 450 K 510 K for 30% reduced

Coil resin curing should not exceed temperatures (for 15 h) of:

- → 470 K for 20% reduced
- → 450 K for 30% reduced

No indication was found of precipitation hardening due to artificial aging.

Hardness, HV10, of 20% and 30% single pass cold-rolled short samples subjected to various thermal treatments with a duration of 15 h.