

Advanced Composite Materials for Thermal Management Applications

Alessandro Bertarelli, Nicola Mariani, CERN

(with contributions from F. Carra¹, A. Dallocchio¹, G.A. Izquierdo¹, S. Bizzaro²) ¹ CERN; ² Brevetti Bizz

> 1st Workshop for Science and Business on Advanced Materials and Surfaces CERN, Geneva – *19-20 November, 2013*

Context

- What is a Collimator?
 - **Metal Matrix Composites**
 - Copper-Diamond Composites
 - Molybdenum-Graphite Composites
- Material Tests in HiRadMat
- Further Applications ...
- Summary and Perspectives

- LHC is reaching unprecedented energy and energy density (2-3 orders of magnitude above other machines).
- **Beam-induced accidents** are among the m dangerous and still less explored events accelerators.
- Collimators (and all Beam inherently exposed to
- Collimators are machine ir instabi

7 305e40

Context

What is a Collimator?

SC magnets

and particle

physics exp.

EUCARD

Metal Matrix Composites

BREVETTI BIZZ

Material development program carried out pursuing two complementary paths:

EUCARD²

• EuCARD by CERN, RHP-Technology, EPFL, Polito, GSI, NRC-KI (superseded by EuCARD²)

CÉRN

- Partnership Agreement between CERN and Italian SME (Brevetti Bizz).
- R&D focused on Metal Matrix Composites (MMC) with Diamond or Graphite reinforcements as they have the potential to combine the properties of Diamond and Graphite (high k, low ρ and low CTE) with those of Metals (strength, ductility, γ, ...).
- Production techniques include Rapid Hot Pressing (RHP), Spark Plasma Sintering (SPS), Liquid Phase Sintering and Liquid Infiltration.

Metal Matrix Composites

- Materials investigated are Copper-Diamond (Cu-CD), Molybdenum-Diamond (Mo-CD), Silver-Diamond (Ag-CD), Molybdenum-Graphite (Mo-Gr)
 - Most promising materials are Cu-CD and Mo-Gr.
- Ag-CD and Mo-CD are, by now, sidelined as they are limited by (relatively) low melting temperature (Ag-CD) and insufficient toughness (Mo-CD).
- Mo-Gr is particularly appealing as it is easy to machine, is versatile and can be coated with a Mo layer dramatically increasing electrical conductivity ...

Copper-Diamond Composite

LHC Collimation Project CERN

- **Engineering Department**
- Developed by **RHP-Technology** (Austria)
 - No diamond degradation (in reducing atmosphere graphitisation starts at ~ 1300 °C)
 - Very good thermal (~490 Wm⁻¹K⁻¹) and electrical conductivity (~12.6 MSm⁻¹).
- No direct interface between Cu and CD (lack of affinity). Partial bonding bridging assured by Boron Carbides limits mechanical strength (~120 MPa).
 - Cu low melting point (1083 °C) may limit Cu-CD applications for highly energetic accidents.

CTE increases significantly with T due to high Cu content (from ~6 ppmK⁻¹ at RT up to ~12 ppmK⁻¹ at 900 °C)

Molybdenum-Graphite Composites

• Co-developed by **CERN** and **Brevetti Bizz**.

Why Graphite?

- Low CTE
- Low Density
- High Thermal Conductivity (natural graphite flakes)
- Very High Service Temperatures (also allowing elevated processing temperatures)
- High Shockwave Damping

Composite Features

- Very high melting point (2500+°C)
- Low Density (can be tailored)
- Very high thermal conductivity
- Highly stable (forms MoC_{1-x} carbides)
- Fair electrical conductivity
- Mechanical strength to be improved ...

Why Molybdenum?

- Refractory metal
- High mechanical strength
- Density lower than Tungsten

BREVETTI BIZZ

Molybdenum-Graphite Composites

Alessandro Bertarelli - CERN

Addition of mesophase pitch-base carbon fibers

Liquid Phase Spark Plasma Sintering (>2500° C)

Advantages of Carbon Fibers addition

- Increase mechanical strength
- Contribute to high thermal conductivity (mesophase pitch) grade)
- Along with MoC_{1-x}, catalyze graphitization process

nent

Mo-Gr-CF Microstructures

- Homogeneous distribution of graphite, Thermal Conductivity 700+ Wm¹K fibers and fine MoC_{1-x} grains
- Recrystallization of graphite and CF
- Highly Oriented Graphene planes
- (970/0 of theoretical value) Mechanical Strength 7 15 MPa. Strong fiber-matrix bonding
- Improved Mechanical St

LHC Collimation

Material Tests in HiRadMat

Why HiRadMat Experiments?

- With accidental beam impacts, one enters a relatively unknown territory, that of high power explosions and ballistics.
- Existing material **Constitutive Models** at extreme conditions are limited and mostly drawn from military research (classified).
- Simulations are **sophisticated**, but unavoidably affected by **uncertainties and approximations**.
 - Consequences on UHV, electronics, bellows cannot be easily anticipated by numerical simulations.
- Only dedicated material tests can provide the correct inputs for numerical analyses and validate/benchmark simulation results.
- Based on this, two complementary experiments at CERN HiRadMat facility were approved:
 - Destructive Test of a complete tertiary collimator for a thorough, integral assessment of beam accident consequences (HRMT09 – A. Rossi, O. Aberle, S. Redaelli, M. Cauchi et al.).

HRMT14 Experiment

- Science-Business WAMAS Benchmark advanced numerical simulations and material constitutive models through extensive acquisition system.
 - Characterize in one go six existing and novel materials under development: Inermet180, Molybdenum, Glidcop, Mo-CD, Cu-CD, Mo-Gr. 2 sample types, 12 target stations, 88 samples.
 - Collect, mostly in real time, experimental data from different acquisition devices (Strain Gauges, Laser Doppler Vibrometer, High Speed video Camera, Temperature and Vacuum probes).

Medium Intensity Samples (Type 1)

- Strain measurements on sample outer surface;
- Radial velocity measurements (LDV);
- Temperature measurements;
- Sound measurements.

High Intensity Samples (Type 2)

- Strain measurements on sample outer surface;
- Fast speed camera to capture fragment front formation and propagation;
- Temperature measurements;
- Sound measurements.

HRTM14: High Intensity Tests

Inermet samples as seen from viewport and camera

gineering Department

Beam

HRMT14: High Intensity Tests

Inermet : comparison Autodyn (SPH) between simulation and experiment

Cycle 0 Time 0.000E+000 ms Units mm, mg, ms

	Case	Bunches	p/bunch	Total Intensity	Beam Sigma	
CERN	Simulation	60	1.5e11	9.0e12 p	2.5 mm	
	Experiment	72	1.26e11	9.0e12 p	1.9 mm	

Velocity

316 m/s

~275 m/s

Specimen

Slot

9

8 (partly 9)

LHC Collimation

Project

CERN

Engineering Department

HRMT14: High Intensity Tests

Inermet 180, 72 bunches

Copper-Diamond 144 bunches

Molybdenum, 72 & 144 bunches

Molybdenum-Copper-Diamond 144 bunches

LHC Collimation

Project

Glidcop, 72 bunches (2 x)

Molybdenum-Graphite (3 grades) 144 bunches

Fusio

Mo-Gr Further Applications ...

Thermal Management for High Power Electronics

Potential range of applications can be further expanded thanks to the tailoring possibilities of Molybdenum-Graphite composites ...

Summary and Perspectives

BI

 Bringing LH collimators

- An ambition paths : EuC.
- Cu-CD, Ag-C
- Outstanding (700+ Wm⁻
- RF studies s
- A full LHC C
- ... this calls : progressing

1 two complementary evetti Bizz.

new generation of

ed.

mal conductivity

ance by a factor 10. d in the LHC ...

gram while

Engineering Department

 Newly developed materials are appealing for a broad range of industrial applications and have the potential for a real impact on society ...

Thank you for your attention!

Objectives for Material R&D

Objectives have been turned into a set of Figures of Merit to assess relevant materials

- Reduce RF impedance Maximize Electrical Conductivity
- Maintain/improve jaw geometrical stability in nominal conditions Maximize the stability indicator Steady-state Stability Normalized Index (SSNI)
- Maintain Phase I robustness in accidental Maximize the robustness indicator Transient Thermal
- Improve cleaning efficiency (absorption ra Increase Radiation and nuclear Interaction Lengths, i.e
- Improve maximum operational temperature.

Additional "standard" requirements include ...

• Radiation Hardness, UHV Compatibility, Industrial feasibility of large components, Possibility to Machine, Braze, Join, Coat ..., Toughness, Cost ...

Note Conflicting requirements as to Density

 T_m

K

ρα

 $R(1-v)c_{p1}$

Εαρ

Z

SNI)

Material Ranking								LHC Collimation Project	
ROforum Jusiness W	Material	C-C	Мо	Glidcop ®	Cu-CD	Ag-CD	Mo-Gr	CERT	
	Density [g/cm ³]	1.65	10.22	8.90	~5.4	~6.10	2.8		
	Atomic Number (Z)	6	42	29	~11.4	~13.9	8.3		
	T _m [°C]	3650	2623	1083	~1083	~840	~2520		
	SSNI [kWm2/kg]	24	2.6	2.5	13.1 ÷ 15.3	11.4 ÷ 15.4	83*		
	TSNI [kJ/kg]	793	55	35	44 ÷ 51	60 ÷ 92	195*		
	Electrical Conductivity [MS/m]	0.14	19.2	53.8	~12.6	~11.8	1 ÷ 18 **		
worse better * <i>Estimated values</i>									

better

**** with Mo coating**

- **C-C** stands out as to thermo-mechanical performances. Adversely outweighed by poor electrical conductivity, low Z, expected degradation under irradiation.
- **High-Z metals (Cu, Mo)** possess very good electrical properties. High density adversely affects their thermal stability and accident robustness.
- **Cu-CD** exhibits a balanced compromise between TSNI, SSNI, electrical conductivity, density, atomic number. Its main limitation is the (relatively) low melting point.
- Molybdenum-graphite shows overall very promising figures of merit.

Science-F

Example of an Accidental Impact

Science-Business WAMAS Simulation of 8 LHC bunches at 5 TeV impacting a Tungsten Jaw (TCTA)

- Probability of **water leakage** due to very severe plastic deformations on pipes.
- Impressive jaw damage:
 - Extended eroded and deformed zones.
 - Projections of hot and fast solid tungsten bullets (T≈2000K, V_{max} ≈ 1 km/s) towards opposite jaw. Slower particles hit tank covers (at velocities just below ballistic limit).
 - Risk of "bonding" the two jaws due to the projected re-solidified material.

EIROforum

HRMT14: Medium Intensity Tests

- Science-Business WAMAS Extensive numerical analysis (Autodyn), based on FLUKA calculations to determine stress waves, strains and displacements.
 - Comparison of simulated **Hoop and Longitudinal Strains and Radial velocity** very well match measured values on sample outer surface.

