Overview of Advanced Surface Science activities at CERN

S.Calatroni, M.Taborelli TE-VSC-SCC

20 member states + associates (Romania, Israel, Serbia…) + observers (USA, Russian Federation, Japan….) Some 2500 staff members and 8000 visitors CERN (European Organization for Nuclear Research)

Vacuum, Surfaces & Coatings Group Technology Department 19 November 2013 S. Calatroni & M. Taborelli 2014

Cern accelerator complex

Vacuum, Surfaces & Coatings Group Technology Department

CERN

19 November 2013 **S. Calatroni & M. Taborelli** 3

The LHC , Large Hadron Collider

Size

27 km circumference, in a tunnel underground (100-150 m)

Collider (present parametrs)

Proton-proton (ion – ion) collisions at 4 TeV + 4 TeV for protons (world's highest energy), 2 beams made of about 2000 bunches of 10^{11} protons spaced by 50 ns, 11KHz revolution frequency, 10h beam lifetime

Four main experiments and detectors

About 20 collisions per bunch crossing or 6*10⁸ collisions/s 15 Petabytes data/year

LS1 upgrade

A large upgrade program is under way in order to attain 7 TeV $+ 7$ TeV proton collisions, higher availability of the machine

Basic components of particle accelerators

Accelerating cavities

Magnets

The world's longest vacuum system (about 100Km):

- pressure ranges from insulation vacuum $(<10^{-3}$ mbar) to UHV in LHC $(10^{-10}$ mbar) to XHV in LEIR $(10-12$ mbar)

- necessary to reduce the beam/gas interaction (defocussing, energy spread, lifetime, noise in the detectors of the experiments)

- Pumping is achieved by mechanical pumps, Ion pumps, cryopumping and getters

Experimental vacuum system

Particle detectors

Activities: Surfaces Chemistry and Coatings

Surface characterization and analysis (XPS, Auger, Secondary Electron Yield)

Chemical analysis (FTIR, UV-vis, Gas Chromatography, atomic absorption spectroscopy, DSC,….)

Surface modification by surface finishing (UHV grade cleaning, etching, electroplating, electrochemical characterization…)

Thin film PVD coating (magnetron sputtering, evaporation)

The goal is to maintain/improve the performance of the accelerators and detectors in terms of availability, quality, lifetime of components: research and development

Monitoring cleanliness for UHV components:

FTIR Through elution with C_6H_{14}

XPS

Vacuum, Surfaces & Coatings Group

Copper plating of large objects (DTL tank)

Vacuum, Surfaces & Coatings Group Technology Department 19 November 2013 S. Calatroni & M. Taborelli 14 November 2013

Plating of many different metals: Ag, Au, Rh on the LHC RF-contacts

Radiography, installed

Inserted in the machine vacuum: cleanliness and purity to avoid degassing !

The Ag and Rh combination provides good electrical contact without cold-welding in vacuum

Optimization of current profile for the Electropolishing of Nb

entation by Leonel Ferreira this afternoor Presentation by Leonel Ferreira this afternoon

200

Vacuum, Surfaces & Technology Department 19 November 2013 S. Calatronic United States along anode (mm) and the M. Taborelli 16 November 2013 S. Calatroni 16 November 2013 S. Calatroni 16 November 2013 S. Calatroni 16 November 2013 S. Calatro 150 0 200 400 600 800 1000 1200 1400 1600 1800 2000 **Distance along anode (mm)**

K-Coordinate [mm]

 $00E+0$

Anisotropic etching of polymides

Most interesting sample : 1 [5/50/5 um]

Highly anisotropic etching Micron level definition Wide process window

This process has already triggered four patents

Vacuum, Surfaces & Coatings Group Technology Department

6

Advanced etching and lithographic techniques

Thin, metal coated polyimide foil perforated with high density micron level accuracy holes pattern.

Electrons are collected on a patterned readout board. A fast signal can be detected on the lower GEM electrode for triggering or energy discrimination. All readout electrodes are at ground potential.

Presentation by Rui De Oliveira this afternoon

Coating of vacuum chambers

DC-magnetron sputtering with target made of intertwisted wires of Ti, Zr, V: developed at CERN in 1998. Patented and licensed to industry

Activation temperature (\sim 200 °C) compatible with copper vacuum chambers (does not deteriorate too much the mechanical properties). Used for the LHC accelerator for pumping and low secondary yield $(d_{max}=1.1$ after activation) in 6 km of Long Straight Sections

Vacuum, Surfaces & Coatings Group Technology Department 19 November 2013 S. Calatroni & M. Taborelli 19 November 2013

Coating plant for LHC –LSS and detector chambers up to 7 m length

Vacuum, Surfaces & Coatings Group Technology Department 19 November 2013 S. Calatroni & M. Taborelli 20

Lab size DC-magnetron sputtering facilities

Possibility to coat substrates up to 1.2 m length, substrate rotation for complex shapes

Up to 3 independent targets for alloy deposition with tunable composition

Typical materials:

- Cu, Au
- Ti
- NEG (TiZrV)
- Nb
- B_4C

Foreseen developments: - insulators, reactive sputtering, RF magnetron…..

Nb/Cu cavities: HIE-ISOLDE

Substrate preparation (electropolishing or chemical polishing) are crucial for the success of the coating

Presentation by Wil Vollenberg this afternoon

Coatings preventing electron cloud

Proton bunch (charge +)

Electron (charge -)

The beam is perturbed by the electron multiplication; the problem is more important for high beam currents (beam potential) and short bunch spacing

To reduce the effect one must reduce the secondary electron yield of the walls or attract the generated electrons by other means

The possible solution : carbon a-C coatings

-a-C coating on conner deposited by magnetron sputtering (in Ne) -as expe More on this topic by Mounir Mensi this afternoon -development started in 2008

Introduction: SPS dipoles

Almost 5 km of the SPS are filled with MBB and MBA type dipoles (>700).

The length of each dipole is 6.5 m and weights ~18 tons.

The beampipes are embedded in the yoke.

exchange beampipe, close the dipole.

Easy to coat

Too expensive (open/close dipole)

coat new beampipes, open the dipole, coat the actual beampipes directly in the dipole.

> **Easy to coat cheaper**

DC hollow cathode

Coat actual beampipes by DC Hollow Cathode Sputtering (DCHCS)

DC hollow cathode

Coat actual beampipes by DC Hollow Cathode Sputtering (DCHCS)

DC hollow cathode

Coat actual beampipes by DC Hollow Cathode Sputtering (DCHCS) *THE TECHNIQUE IS MATURE FOR LARGE SCALE PRODUCTION*

Pressure: 1.1 x10-1 mbar (Ar) Power: 0.9 kW (1.5A @ 600 V) 0.5 m*m in 20 hours*

Research interests

- Treatments or coatings to lower the SEY of insulator surfaces, like alumina, and metals
- NEGs with lower activation temperature than TiZrV
- Simulations of electron-ion plasma for coating systems
- Methods to produce thin films of refractory metals in small diameter tubes (< 10 mm), as electrochemical means…
- HIPIMS on SC RF cavities and more….
- Structured films
- Coatings as permeation barriers for high transparency vacuum chambers
- flexible (!) insulating coatings
- Coating/treating of long (30m) accelerator vacuum systems without dismounting the beamline
- Novel cleaning techniques for UHV applications
- Simulation of electrochemical processes in complex geometries

