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Modern methods for loops 

1. Generalized unitarity 

2. A sample quadruple cut 

3. Hierarchy of cuts 

4. Triangle and bubble coefficients 

5. The rational part 
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Branch cut information   

 Generalized Unitarity (One-loop fluidity)  
 Ordinary unitarity: 

put 2 particles on shell 

Generalized unitarity: 

put 3 or 4 particles on shell 

Trees recycled into loops! 

Can’t put 5 particles 

on shell because 

only 4 components 

 of loop momentum 



4 

One-loop amplitudes reduced to trees  

rational part 

When all external momenta are in D = 4, loop momenta in D = 4-2e 

(dimensional regularization), one can write:              

                                                         Bern, LD, Dunbar, Kosower (1994) 

known scalar one-loop integrals, 

same for all amplitudes 

coefficients are all rational functions – determine algebraically 

from products of trees using (generalized) unitarity 
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Generalized Unitarity  

for Box Coefficients di 
Britto, Cachazo, Feng, hep-th/0412308 

No. of dimensions  =  4  =  no. of constraints    2 discrete solutions 

(2, labeled by ±) Easy to code, numerically very stable 
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Box coefficients di  (cont.) 

• General solution involves a  

quadratic formula 

• Solutions simplify (and are more 

stable numerically) when all  internal 

lines are massless, and at least one 

external line (k1) is massless: 

BH, 0803.4180;  

Risager 0804.3310 

k1 

Exercise:  Show  

l2-l3 = K2, l3-l4 = K3, l4-l1 = K4  



Example of MHV amplitude 
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k1 

All 3-mass boxes (and 4-mass boxes) 

vanish trivially  – not enough (-) helicities 
+ 

+ 

- 

- 

+ + 

+ 

- 

- 
- 

- + 

+ 

0 

Have 2 + 4 = 6 (-) helicities, 

but need 2 + 2 + 2 + 1 = 7 

2-mass boxes come in two types: 

2me 2mh 

0 



5-point MHV Box example 
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For (--+++), 3 inequivalent boxes to consider 

Look at this one.  Corresponding integral in dim. reg.: 



5-point MHV Box example 
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Each box coefficient comes 

uniquely from 1 “quadruple cut” 

Each bubble coefficient from 1 double cut, 

removing contamination by boxes and triangles 

Each triangle coefficient from 1 triple cut,  

but “contaminated” by boxes 

Ossola, Papadopolous, Pittau, hep-ph/0609007; 

Mastrolia, hep-th/0611091; Forde, 0704.1835;  

Ellis, Giele, Kunszt, 0708.2398; Berger et al., 0803.4180;… 

 Full amplitude determined hierarchically 

Rational part depends on all of above 

Britto, Cachazo, Feng, hep-th/0412103 
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Triangle coefficients 

Solves  

for suitable definitions of  (massless)  

Box-subtracted  

triple cut has poles 

only at t = 0, ∞ 

Triangle coefficient c0 

plus all other coefficients cj 

obtained by discrete Fourier 

projection, sampling at  

(2p+1)th  roots of unity 

Forde, 0704.1835; BH, 0803.4180 

Triple cut solution depends on one complex parameter, t 

Bubble coeff’s similar 



Rational parts 

• These cannot be detected from unitarity 

cuts with loop momenta in D=4.  They come 

from extra-dimensional components of the 

loop momentum (in dim. reg.) 

• Three ways have been found to compute them: 

1. One-loop on-shell recursion (BBDFK, BH) 

2. D-dimensional unitarity (EGKMZ, BH, NGluon, …) 

involving also quintuple cuts 

3. Specialized effective vertices (OPP R2 terms) 
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1. One-loop on-shell recursion  
Bern, LD, Kosower, hep-th/0501240, hep-ph/0505055, hep-ph/0507005; 

Berger, et al., hep-ph/0604195, hep-ph/0607014, 0803.4180 

• Full amplitude has branch cuts, from  

e.g.  

  

• However, cut terms already determined using generalized unitarity 

• Same BCFW approach works for rational parts 

of one-loop QCD amplitudes: 

Inject complex momentum at (say) leg 1, remove it at leg n. 
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Generic analytic properties of shifted 1-loop amplitude,            

Subtract cut parts 

Cuts and poles in z-plane: 

But if we know the cuts (via unitarity in D=4), 

we can subtract them: 

full amplitude cut-containing part rational part 

Shifted rational function 

has no cuts, but has spurious poles in z  

because of Cn: 
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• And, spurious pole residues cancel between        and  

 Compute them from known       

 Computation of spurious pole terms 

Extract these residues numerically 

• More generally, spurious poles originate from vanishing of  

integral Gram determinants: 

• Locations zb all are known. 
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Physical poles, as in BCFW  

  recursive diagrams (simple) 

recursive: 

For rational part of  

Summary of on-shell recursion: 

• Loops recycled into loops with more legs (very fast) 

• No ghosts, no extra-dimensional loop momenta 

• Have to choose shift carefully, depending on the helicity, 
because of issues with   z  ∞   behavior, and a few                          
bad factorization channels (double poles in z plane).   

• Numerical evaluation of spurious poles is a bit tricky. 



2. D-dimensional unitarity 

• In D=4-2e, loop amplitudes have fractional 

dimension ~ (-s)2e, due to loop integration measure 

d4-2el.   

• So a rational function in D=4 is really:    

        R(sij) (-s)
2e  = R(sij) [1 + 2e ln(-s) + …]  

• It has a branch cut at O(e)  

• Rational parts can be determined if unitarity cuts 

are computed including [-2e] components of the 

cut loop momenta. 
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Bern, Morgan, hep-ph/9511336; BDDK, hep-th/9611127;  

Anastasiou et al., hep-ph/0609191; … 



• Extra-dimensional component  m  of  

loop momentum effectively lives in a 5th dimension. 

• To determine m2 and  (m2)2  terms 

 in integrand, need quintuple cuts as 

well as quadruple, triple, … 

• Because volume of d-2el is O(e), 

only need particular “UV div” parts: 

(m2)2 boxes, m2 triangles and bubbles 

• Red dots are “cut constructible”: 

m  terms in that range  O(e) only 

Numerical D-dimensional unitarity 
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EKMZ 

1105.4319 

Giele, Kunszt, Melnikov, 0801.2237; Ellis, GKM, 0806.3467; EGKMZ, 0810.2762; 

Badger, 0806.4600; BlackHat; … 



D-dimensional unitarity summary 

• Systematic method for arbitrary helicity, 
arbitrary masses 

• Only requires tree amplitude input 
(manifestly gauge invariant, no need for 
ghosts) 

• Trees contain 2 particles with momenta in 
extra dimensions (massless particles 
become similar to massive particles)  

• Need to evaluate quintuple cuts as well as 
quad, triple, … 
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3. OPP method 

• Four-dimensional integrand decomposition of OPP 

corresponds to quad, triple, double cut hierarchy for   

“cut part”. 

• OPP also give a prescription for obtaining part of the 

rational part, R1  from the same 4-d data, by taking into 

account m2 dependence in integral denominators.   
OPP, 0802.1876 

• The rest, R2 , comes from m2 terms in the numerator. 

Because there are a limited set of “UV divergent” 

terms, R2  can be computed for all processes using a 

set of effective 2-, 3-, and 4-point vertices 
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Ossola, Papadopoulos, Pittau, hep-ph/0609007 



Some OPP R2 vertices 
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For ‘t Hooft-Feynman gauge, x = 1 Draggiotis, Garzelli,  

Papadopoulos, Pittau,  

0903.0356 

• Evaluation of R2  

very fast (tree like) 

• Split into R1 and R2   

gauge dependent 

• Cannot use products 

of tree amplitudes to 

compute R1 . 



Open Loops and Unitarity 

• OPP method requires one-loop Feynman 

diagrams in a particular gauge to generate 

numerators.  This can be slow. 

• However, it is possible to use a recursive 

organization of the Feynman diagrams to 

speed up their evaluation  Open Loops 

L. Dixon       Beyond Feynman Diagrams Lecture 3       April 25, 2013 22 

Cascioli, Maierhöfer, Pozzorini, 1111.5206; Fabio C.’s talk 
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One example of numerical stability 

Some one-loop helicity amplitudes contributing to NLO QCD 

corrections to the processes pp  (W,Z) + 3 jets, computed using 

unitarity-based method.  Scan over 100,000 phase space points, 

plot distribution in log(fractional error): 

BlackHat, 0808.0941 


