Beyond Feynman Diagrams Lecture 3

Lance Dixon
 Academic Training Lectures CERN
 April 24-26, 2013

Modern methods for loops

1. Generalized unitarity
2. A sample quadruple cut
3. Hierarchy of cuts
4. Triangle and bubble coefficients
5. The rational part

Branch cut information \rightarrow Generalized Unitarity (One-loop fluidity)

Ordinary unitarity:
put 2 particles on shell

Trees recycled into loops!
L. Dixon

Generalized unitarity:
put 3 or 4 particles on shell
Can't put 5 particles on shell because only 4 components of loop momentum

One-loop amplitudes reduced to trees

When all external momenta are in $D=4$, loop momenta in $D=4-2 \varepsilon$ (dimensional regularization), one can write:

Bern, LD, Dunbar, Kosower (1994)

Generalized Unitarity for Box Coefficients d_{i}

Britto, Cachazo, Feng, hep-th/0412308

$$
\begin{aligned}
& \int d^{4} \ell \delta\left(\ell_{1}^{2}-m_{1}^{2}\right) \delta\left(\ell_{2}^{2}-m_{2}^{2}\right) \\
& \quad \times \delta\left(\ell_{3}^{2}-m_{3}^{2}\right) \delta\left(\ell_{4}^{2}-m_{4}^{2}\right) \times A^{1-\text { loop }}\left(\ell_{i}\right) \\
&= \sum_{ \pm} A_{1}^{\text {tree }}\left(\ell_{0}^{ \pm}\right) A_{2}^{\text {tree }}\left(\ell_{0}^{ \pm}\right) A_{3}^{\text {tree }}\left(\ell_{0}^{ \pm}\right) A_{4}^{\text {tree }}\left(\ell_{0}^{ \pm}\right) \\
&= d_{i}^{+}+d_{i}^{-}
\end{aligned}
$$

No. of dimensions $=4=$ no. of constraints $\rightarrow 2$ discrete solutions
Easy to code, numerically very stable

Box coefficients d_{i} (cont.)

- General solution involves a quadratic formula
- Solutions simplify (and are more stable numerically) when all internal lines are massless, and at least one external line $\left(k_{1}\right)$ is massless:

$$
\begin{aligned}
& \left(l_{1}^{(\pm)}\right)^{\mu}=\frac{\left\langle 1^{\mp}\right| K_{2} I K_{3} K_{1} \gamma^{\mu}\left|1^{ \pm}\right\rangle}{2\left\langle 1^{\mp}\right| K_{2} K_{4}\left|1^{ \pm}\right\rangle}, \\
& \left(l_{3}^{(\pm)}\right)^{\mu}=\frac{\left\langle 1^{\mp}\right| K_{2} \gamma^{\mu} I K_{3} I K_{4}\left|1^{ \pm}\right\rangle}{2\left\langle 1^{\mp}\right| I K_{2} I K_{4}\left|1^{ \pm}\right\rangle},
\end{aligned}
$$

$$
\begin{aligned}
& \left(l_{2}^{(\pm)}\right)^{\mu}=-\frac{\left\langle 1^{\mp}\right| \gamma^{\mu} \not K_{2} K_{3} I K_{4}\left|1^{ \pm}\right\rangle}{2\left\langle 1^{\mp}\right| I K_{2} K_{4}\left|1^{ \pm}\right\rangle}, \\
& \left(l_{4}^{(\pm)}\right)^{\mu}=-\frac{\left\langle 1^{\mp}\right| K_{2} K_{3} \gamma^{\mu} K_{4}\left|1^{ \pm}\right\rangle}{2\left\langle 1^{\mp}\right| K K_{2} K_{4}\left|1^{ \pm}\right\rangle} .
\end{aligned}
$$

Exercise: Show

$l_{2}-l_{3}=K_{2}, l_{3}-l_{4}=K_{3}, l_{4}-l_{1}=K_{4}$

BH, 0803.4180;
Risager 0804.3310
L. Dixon Beyond Feynman Diagrams

Example of MHV amplitude

All 3-mass boxes (and 4-mass boxes) vanish trivially - not enough (-) helicities

> Have $2+4=6(-)$ helicities, but need $2+2+2+1=7$

2-mass boxes come in two types:

5-point MHV Box example

For (---++), 3 inequivalent boxes to consider

(b)

(c)

Look at this one. Corresponding integral in dim. reg.:

$$
\begin{aligned}
\mathcal{I}\left(K_{12}\right)= & \mu^{2 \epsilon} \int \frac{d^{4-2 \epsilon} \ell}{(2 \pi)^{4-2 \epsilon}} \frac{1}{\ell^{2}\left(\ell-K_{12}\right)^{2}\left(\ell-K_{123}\right)^{2}\left(\ell+k_{5}\right)^{2}} \\
= & \frac{-2 i c_{\Gamma}}{s_{34} s_{45}}\left\{-\frac{1}{\epsilon^{2}}\left[\left(\frac{\mu^{2}}{-s_{34}}\right)^{\epsilon}+\left(\frac{\mu^{2}}{-s_{45}}\right)^{\epsilon}-\left(\frac{\mu^{2}}{-s_{12}}\right)^{\epsilon}\right]\right. \\
& \left.+\operatorname{Li}_{2}\left(1-\frac{s_{12}}{s_{34}}\right)+\operatorname{Li}_{2}\left(1-\frac{s_{12}}{s_{45}}\right)+\frac{1}{2} \ln ^{2}\left(\frac{-s_{34}}{-s_{45}}\right)+\frac{\pi^{2}}{6}\right\} \\
& +\mathcal{O}(\epsilon),
\end{aligned}
$$

5-point MHV Box example

$$
\ell_{4}^{\mu}=\frac{1}{2} \xi_{4}\left\langle 3^{-}\right| \gamma^{\mu}\left|4^{-}\right\rangle .
$$

The constant ξ_{4} is fixed by the last of the four on-shell equations,

$$
\ell_{1}^{2}=\left(\ell_{4}-K_{45}\right)^{2}=-\xi_{4}\left\langle 3^{-}\right| 5\left|4^{-}\right\rangle+s_{45}=0
$$

to have the value $\xi_{4}=\langle 45\rangle /\langle 35\rangle$.

$$
\begin{aligned}
c_{12} & =\frac{1}{2} A_{4}^{\text {tree }}\left(-\ell_{1}^{+}, 1^{-}, 2^{-}, \ell_{3}^{+}\right) A_{3}^{\text {tree }}\left(-\ell_{3}^{-}, 3^{+}, \ell_{4}^{+}\right) A_{3}^{\text {tree }}\left(-\ell_{4}^{-}, 4^{+}, \ell_{5}^{-}\right) A_{3}^{\text {tree }}\left(-\ell_{5}^{+}, 5^{+}, \ell_{1}^{-}\right) \\
& =\frac{1}{2} \frac{\langle 12\rangle^{3}}{\left\langle 2 \ell_{3}\right\rangle\left\langle\ell_{3}\left(-\ell_{1}\right)\right\rangle\left\langle\left(-\ell_{1}\right) 1\right\rangle} \frac{\left[3 \ell_{4}\right]^{3}}{\left[\ell_{4}\left(-\ell_{3}\right)\right]\left[\left(-\ell_{3}\right) 3\right]} \frac{\left\langle\ell_{5}\left(-\ell_{4}\right)\right\rangle^{3}}{\left\langle 4 \ell_{5}\right\rangle\left\langle\left(-\ell_{4}\right) 4\right\rangle} \frac{\left[\left(-\ell_{5}\right) 5\right]^{3}}{\left[5 \ell_{1}\right]\left[\ell_{1}\left(-\ell_{5}\right)\right]} \\
& =-\frac{1}{2} \frac{\langle 12\rangle^{3}\left\langle 3^{+}\right| \ell_{4} \ell_{5}\left|5^{-}\right\rangle^{3}}{\left\langle 2^{-}\right| \ell_{3}\left|3^{-}\right\rangle\left\langle 4^{-}\right| \ell_{4} \ell_{3} \ell_{1}\left|5^{-}\right\rangle\left\langle 1^{-}\right| \ell_{1} \ell_{5}\left|4^{+}\right\rangle} . \\
c_{12} & =\frac{1}{2} \frac{\langle 12\rangle^{3}\left\langle 4^{-}\right| \ell_{4}\left|3^{-}\right\rangle^{2}[45]^{3}}{\left\langle 2^{-}\right| \ell_{4}\left|3^{-}\right\rangle\langle 34\rangle[45]\langle 15\rangle\left\langle 4^{-}\right| \ell_{4}\left|5^{-}\right\rangle} \\
& =-\frac{1}{2} \frac{\langle 12\rangle^{3} s_{34} s_{45}}{\langle 23\rangle\langle 34\rangle\langle 45\rangle\langle 51\rangle} \\
& =\frac{i}{2} s_{34} s_{45} A_{5}^{\text {tree }}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}\right) .
\end{aligned}
$$

Full amplitude determined hierarchically

Each box coefficient comes
uniquely from 1 "quadruple cut"
Britto, Cachazo, Feng, hep-th/0412103
Ossola, Papadopolous, Pittau, hep-ph/0609007;
Mastrolia, hep-th/0611091; Forde, 0704.1835;
Ellis, Giele, Kunszt, 0708.2398; Berger et al., 0803.4180;...
Each triangle coefficient from 1 triple cut, but "contaminated" by boxes

Each bubble coefficient from 1 double cut, removing contamination by boxes and triangles
Rational part depends on all of above

Triangle coefficients

Forde, 0704.1835; BH, 0803.4180
Triple cut solution depends on one complex parameter, t
$l_{1}^{\mu}(t)=\tilde{K}_{1}^{\mu}+\tilde{K}_{3}^{\mu}+\frac{t}{2}\left\langle\tilde{K}_{1}^{-}\right| \gamma^{\mu}\left|\tilde{K}_{3}^{-}\right\rangle+\frac{1}{2 t}\left\langle\tilde{K}_{3}^{-}\right| \gamma^{\mu}\left|\tilde{K}_{1}^{-}\right\rangle$
Solves $\quad l_{1}^{2}(t)=l_{2}^{2}(t)=l_{3}^{2}(t)=0$
for suitable definitions of (massless)
$T_{3}(t)=\sum_{j=-p}^{p} c_{j} t^{j} \pm$
Bubble coeff's similar

Triangle coefficient c_{0} plus all other coefficients $\left.c_{j} .3\right)^{2}$ obtained by discrete Fourier projection, sampling at $(2 p+1)^{\mathrm{th}}$ roots of unity

L. Dixon Beyond Feynman Diagrams

Rational parts

- These cannot be detected from unitarity cuts with loop momenta in $\mathrm{D}=4$. They come from extra-dimensional components of the loop momentum (in dim. reg.)
- Three ways have been found to compute them:

1. One-loop on-shell recursion (BBDFK, BH)
2. D-dimensional unitarity (EGKMZ, BH, NGluon, ...) involving also quintuple cuts
3. Specialized effective vertices (OPP R_{2} terms)

1. One-loop on-shell recursion

Bern, LD, Kosower, hep-th/0501240, hep-ph/0505055, hep-ph/0507005; Berger, et al., hep-ph/0604195, hep-ph/0607014, 0803.4180

- Same BCFW approach works for rational parts of one-loop QCD amplitudes:

Inject complex momentum at (say) leg 1, remove it at leg n .

$$
\begin{aligned}
& k_{1}(z)+k_{n}(z)=k_{1}+k_{n} \\
& k_{1}^{2}(z)=k_{n}^{2}(z)=0
\end{aligned} \Rightarrow A(0) \rightarrow A(z)
$$

- Full amplitude has branch cuts, from
e.g. $\ln \left(s_{23}\right) \Rightarrow \ln [(\langle 23\rangle+z\langle 13\rangle)[32]]$
- However, cut terms already determined using generalized unitarity

Subtract cut parts

Generic analytic properties of shifted 1-loop amplitude, $A_{n}(z)$
Cuts and poles in z-plane: $\ln \left(s_{23}\right) \Rightarrow \ln [(\langle 23\rangle+z\langle 13\rangle)[32]]$
But if we know the cuts (via unitarity in $\mathrm{D}=4$), we can subtract them: $\quad R_{n} \equiv A_{n}-C_{n}$

Shifted rational function $R_{n}(z)=A_{n}(z)-C_{n}(z)$ has no cuts, but has spurious poles in z because of C_{n} :

$$
C_{n} \longrightarrow \frac{\ln (r)+1-r}{(1-r)^{2}} \leftarrow R_{n}
$$

Computation of spurious pole terms

- More generally, spurious poles originate from vanishing of integral Gram determinants: $\Delta_{n}\left(z_{\beta}\right)=0$
- Locations z_{β} all are known.
- And, spurious pole residues cancel between C_{n} and R_{n} \rightarrow Compute them from known C_{n}

$$
\begin{aligned}
& R_{n}^{S}(0)=-\sum_{\text {spur. poles } \beta} \operatorname{Res}_{z=z_{\beta}} \frac{R_{n}(z)}{z}=\sum_{\text {spur. poles }}{\underset{z=z_{\beta}}{\operatorname{Res}} \frac{C_{n}(z)}{z}}_{\begin{array}{|l|l|}
\hline \text { Extract these residues numerically } \\
& \bullet
\end{array}}^{\bullet} .
\end{aligned}
$$

Physical poles, as in BCFW \rightarrow recursive diagrams (simple)

For rational part of $A_{6}^{1-\mathrm{loop}}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}, 5^{+}, 6^{+}\right)$
recursive:

Summary of on-shell recursion:

- Loops recycled into loops with more legs (very fast)
- No ghosts, no extra-dimensional loop momenta
- Have to choose shift carefully, depending on the helicity, because of issues with $z \rightarrow \infty$ behavior, and a few bad factorization channels (double poles in z plane).
- Numerical evaluation of spurious poles is a bit tricky.

2. D-dimensional unitarity

- In $D=4-2 \varepsilon$, loop amplitudes have fractional dimension $\sim(-s)^{2 \varepsilon}$, due to loop integration measure $d^{4-2 \varepsilon} l$.
- So a rational function in $\mathrm{D}=4$ is really:

$$
R\left(s_{i j}\right)(-s)^{2 \varepsilon}=R\left(s_{i j}\right)[1+2 \varepsilon \ln (-s)+\ldots]
$$

- It has a branch cut at $O(\varepsilon)$
- Rational parts can be determined if unitarity cuts are computed including $[-2 \varepsilon]$ components of the cut loop momenta.

Bern, Morgan, hep-ph/9511336; BDDK, hep-th/9611127; Anastasiou et al., hep-ph/0609191; ...

Numerical D-dimensional unitarity

Giele, Kunszt, Melnikov, 0801.2237; Ellis, GKM, 0806.3467; EGKMZ, 0810.2762; Badger, 0806.4600; BlackHat; ...

- Extra-dimensional component $\vec{\mu}$ of loop momentum effectively lives in a $5^{\text {th }}$ dimension.
- To determine μ^{2} and $\left(\mu^{2}\right)^{2}$ terms in integrand, need quintuple cuts as well as quadruple, triple, ...
- Because volume of $\mathrm{d}^{-2 \varepsilon} l$ is $\mathrm{O}(\varepsilon)$, only need particular "UV div" parts: $\left(\mu^{2}\right)^{2}$ boxes, μ^{2} triangles and bubbles - Red dots are "cut constructible": μ terms in that range $\rightarrow \mathrm{O}(\varepsilon)$ only

D-dimensional unitarity summary

- Systematic method for arbitrary helicity, arbitrary masses
- Only requires tree amplitude input (manifestly gauge invariant, no need for ghosts)
- Trees contain 2 particles with momenta in extra dimensions (massless particles become similar to massive particles)
- Need to evaluate quintuple cuts as well as quad, triple, ...

3. OPP method

Ossola, Papadopoulos, Pittau, hep-ph/0609007

- Four-dimensional integrand decomposition of OPP corresponds to quad, triple, double cut hierarchy for "cut part".
- OPP also give a prescription for obtaining part of the rational part, R_{1} from the same 4-d data, by taking into account μ^{2} dependence in integral denominators. OPP, 0802. 1876
- The rest, R_{2}, comes from μ^{2} terms in the numerator. Because there are a limited set of "UV divergent" terms, R_{2} can be computed for all processes using a set of effective 2-, $3-$, and 4 -point vertices

Some OPP R_{2} vertices

For 't Hooft-Feynman gauge, $\xi=1$

$$
\begin{aligned}
\underset{\mu_{1}, a_{1}}{\frac{p}{\underset{r a n}{c}}} \underset{\mu_{2}, a_{2}}{\infty}=\frac{i g^{2} N_{\text {col }}}{48 \pi^{2}} \delta_{a_{1} a_{2}}[& {\left[\frac{p^{2}}{2} g_{\mu_{1} \mu_{2}}+\lambda_{H V}\left(g_{\mu_{1} \mu_{2}} p^{2}-p_{\mu_{1}} p_{\mu_{2}}\right)\right.} \\
& \left.+\frac{N_{f}}{N_{c o l}}\left(p^{2}-6 m_{q}^{2}\right) g_{\mu_{1} \mu_{2}}\right]
\end{aligned}
$$

$$
\begin{array}{r}
{ }^{\mu_{1}, a_{1}} G_{\mu_{4}, a_{4}} \text { ®o }^{60} \mathrm{G}_{\mu_{3}, a_{3}}{ }^{\circ \sigma^{\mu_{2}, a_{2}}}=-\frac{i g^{4} N_{c o l}}{96 \pi^{2}} \sum_{P(234)}\left\{\frac{\delta_{a_{1} a_{2}} \delta_{a_{3} a_{4}}+\delta_{a_{1} a_{3}} \delta_{a_{4} a_{2}}+\delta_{a_{1} a_{4}} \delta_{a_{2} a_{3}}}{N_{c o l}}\right. \\
+4 \operatorname{Tr}\left(t^{a_{1}} t^{a_{3}} t^{a_{2}} t^{a_{4}}+t^{a_{1}} t^{a_{4}} t^{a_{2}} t^{a_{3}}\right)\left(3+\lambda_{H V}\right)
\end{array}
$$

very fast (tree like)

- Split into R_{1} and R_{2} gauge dependent - Cannot use products of tree amplitudes to compute R_{1}.

> Draggiotis, Garzelli, Papadopoulos, Pittau, 0903.0356

- Evaluation of R_{2}

$$
\left.-\operatorname{Tr}\left(\left\{t^{a_{1}} t^{a_{2}}\right\}\left\{t^{a_{3}} t^{a_{4}}\right\}\right)\left(5+2 \lambda_{H V}\right)\right] g_{\mu_{1} \mu_{2}} g_{\mu_{3} \mu_{4}}
$$

$$
\left.+12 \frac{N_{f}}{N_{c o l}} \operatorname{Tr}\left(t^{a_{1}} t^{a_{2}} t^{a_{3}} t^{a_{4}}\right)\left(\frac{5}{3} g_{\mu_{1} \mu_{3}} g_{\mu_{2} \mu_{4}}-g_{\mu_{1} \mu_{2}} g_{\mu_{3} \mu_{4}}-g_{\mu_{2} \mu_{3}} g_{\mu_{1} \mu_{4}}\right)\right\}
$$

L. Dixon

Beyond Feynman Diagrams
Lecture 3 April 25, 2013

Open Loops and Unitarity

Cascioli, Maierhöfer, Pozzorini, 1111.5206; Fabio C.'s talk

- OPP method requires one-loop Feynman diagrams in a particular gauge to generate numerators. This can be slow.
- However, it is possible to use a recursive organization of the Feynman diagrams to speed up their evaluation \rightarrow Open Loops

One example of numerical stability

Some one-loop helicity amplitudes contributing to NLO QCD corrections to the processes $p p \rightarrow(W, Z)+3$ jets, computed using unitarity-based method. Scan over 100,000 phase space points, plot distribution in log(fractional error):

$$
0 \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} q \bar{q} g^{ \pm} g^{+} g^{ \pm}
$$

