PERFORMANCE OF MICROMEGAS DETECTORS FOR INCLINED TRACKS AND IN MAGNETIC FIELDS

Konstantinos Ntekas

On behalf of the MAMMA Collaboration

National Technical University Of Athens

31 January, 2013

Outline

1 2012 Micromegas Performance Analysis Outline

Inclined Tracks Reconstruction

- Test Beam @ H6
- Track Reconstruction
- Reconstructed Track Angle
- Spatial Resolution Studies
- Combining µTPC & Centroid Information

Micromegas in Magnetic Field

- Motivation
- MC simulation of Micromegas under Magnetic Field
- Test Beam @ H2
- Track Reconstruction with Micromegas under Magnetic Field

Conclusions

Micromegas Performance Studies in 2012

Huge effort by many people from various institutes to demonstrate the excellent performance of Micromegas detector under different data taking conditions!

- Continuous Test Beam periods June-December 2012
- Detailed Simulation Analysis has been carried out
- New Hit/Track reconstruction techniques have been developed
- The Good performance of the detector for inclined tracks was a point to prove.
- Performance of the Micromegas Chamber under Magnetic Fleld was an item of special interest and has been thoroughly investigated.

Inclined Tracks Studies

Setup

- 4 Doublets of X Precision Chambers (0.4 mm strip pitch, 5 mm Drift Gap)
- 2 Doublets of XY Reference Chambers (0.25 mm strip pitch, 5 mm Drift Gap)
- $Ar: CO_2$ 93:7 Gas Mixture (Gain $\simeq 10^4$)
- APV25 Electronics read out with the SRS
- 120 GeV π^+ beam

Drift Time & Chamber Hit Estimation

Angular Resolution

Telescope Reconstruction (8 Planes)

Single Plane Reconstruction

K. Ntekas (N.T.U.Athens)

Position Difference Technique

Method Description

Computing the combined spatial resolution from two chambers with the same orientation

- Time jitter is equal in both chambers and is removed by the position difference among the two
- Both chambers have the same resolution

$$\sigma = \frac{\sigma(X_1 - X_3)}{\sqrt{2}}$$

"Tails' Manipulation"

Careful treatment of the distributions' tails. Results are presented for both fitting the "core" of a double Gaussian as well as weighted average of the two Gaussians.

Global Fit Technique

Method Description

- Correcting the time jitter for even and odd chambers separetely by fitting an odd and an even track
- $\bullet\,$ A Global Fit is then applied to all the $\mu\,TPC$ hits of all the chambers but the one under study
- The local μ TPC track is reconstructed in the chamber under study
- Calculate the x_{half} residuals between the global and the local track

Spatial Resolution (Position Difference/Global Fit)

Summary of the 2 Techniques

Both techniques produce similar residual distributions for the different angles. Weighted Average distribution always a bit wider than the σ from the core distribution of the double Gaussian!

Position Difference

Global Fit

Combined Method Description

$\mu TPC+Centroid$

Pure μTPC track reconstruction produces already very promising results. But is not ideal for angles $< 10^{\circ}$ where a simple centroid hit reconstruction method is still sufficient. Why not try to exploit this information which comes for free. First try is a simple weighted average of the hits from the two different methods using the cluster size of each track as weight.

Results look exciting! There is a lot of room for optimisation and simulation studies on a unique hit reconstruction algorithm are ongoing.

Inner Gaussian

Position Difference

Global Fit

Micromegas In Magnetic Field

Motivation

Micromegas Technology qualified for the New Small Wheel of the ATLAS experiment!

Current Small Wheel

But B-Field in this area is non 0 and non uniform due to EndCap Toroid Magnet

Motivation

Magnetic Field Map in ATLAS SW

Simulation with PERSINT - Phi Component of the Magnetic Field - Z=7800 mm

Motivation

Magnetic Field Vector in ATLAS SW

Simulation with PERSINT - Phi Component of the Magnetic Field - Z=7800 mm

Lorentz-angle

Garfield Simulation

Drift velocity along E

Drift Velocity / Lorentz Angle vs Electric Field for different Magnetic Field Configurations

Standalone MC Tool (Garfield parameters as input)

Cluster Size Effect

K. Ntekas (N.T.U.Athens)

MC Validation - Cluster Position Effect Garfield vs MC

Combined Technique For Spatial Resolution Determination

Weight µTPC & Centroid Techniques in a Combined Reconstruction Algorithm

- Only Centroid Method For Small Angles (GREEN AREA) $w_{cent} = 1, w_{tpc} = 0$
- Only TPC Method For Large Angles (RED AREA) $w_{cent} = 0, w_{tpc} = 1$
- Combine Both Methods In The Middle Area $w_{cent} = \frac{1}{2}, w_{tpc} = \frac{1}{2}$

$\mu {\rm TPC}$ - Centroid Combined Spatial Resolution

Combined Method demonstrates spatial resolution < 100 μm and is independent of the Incident Angle and the Magnetic Field

K. Ntekas (N.T.U.Athens)

Setup

- 2 Doublets of XY Precision Chambers (0.4 mm strip pitch, 5/10 mm Drift Gap)
- 2 Doublets of X Reference Chambers (0.25 mm strip pitch, 4/5 mm Drift Gap)

• APV25 Electronics - read out with the SRS

Goals

- Cluster Size & Position Measurement
- ExB effect & Lorentz Angle Study
- Monte Carlo Validation
- Spatial Resolution Study

Data show good agreement with MC!

Effective Angle Reconstruction

- Comparison of the effective track angle shows good agreement with theoretical expectation
- +/- stands for Charge Spreading/Squeezing respectively because of B-Field

Formulation

- λ : effective track angle
- ϕ : incident track angle

 $\lambda = \arctan(\sin\theta_{lorentz} + \cos\theta_{lorentz} \tan\phi)$

Magnetic Field Data - Cluster Size Effect

Spatial Resolution

MAMMA Anlaysis Status - RD51 Mini Week

Conclusions

Performance for Inclined Tracks

- The Micromegas Spatial Resolution has been proved to be close to 100 μm for different track angles & for 2 different methods used.
- Method of Combining μ TPC & Centroid Hits gives very promising results.
- Angular resolution per plane is satisfying (40-60 mrad), while by using the full telescope (8 planes) one can reconstruct the track angle with accuracy of 0.2-0.3 mrad.
- Improvements
 - Error Treatment
 - Pattern Recognition Techniques can compliment the track reconstruction procedure
 - Combination of μTPC and Centroid can be optimised

Performance in Magnetic Field

- Micromegas Chambers have been tested under Magnetic Field up to 1T without any problem
- Lorentz Angle has been reconstructed successfully
- Resolution with combined Centroid & μTPC modes provides a unique hit reconstruction algorithm for every orientation of the Magnetic Field and for all the possible track incident angles.
- Monte Carlo Simulation is valid showing good agreement with Garfield and Data
- Good understanding of the chamber's performance under Magnetic Field!

BackUp Slides

Time Resolution Issues

- For the μTPC mode operation a good time resolution is essential (<10 ns)
- APV 25 samples signal at 25 ns
- Extracting the time by fitting the signal limits our time resolution to 11-12 ns (first hit time difference between 2 chambers)
- Intrinsic Micromegas time resolution measured in Frascatti TB to be in the order of 5-6 ns

Corrected time ID 44 Entries 2048 100 Mean 0.2623 RMS 5 876 χ^2/ndf 127.2 / 91 80 Constant 55.14 Mean 0.5220 5 401 Sigh 60 40 20 -10 -20 -15 -5 0 5 10 15 20 slewing corrected time (ns)

Angular Distributions For Different Incident Angles

Global Fit Angular Resolution

Anti-Correlation Between μ TPC & Centroid

Ionization Electrons In Micromegas Under Magnetic Field

With B-field

Delta-ray event

5 en 15/08/12 with Garrield version 7.44.

Effective Angle Simulation For NSW Tracks

Resolution vs Cluster Length

Cluster Length follows track angle trend, and should represent the "effective track footprint". resolVsClsize cent

Systematics Due To Magnetic Field

H2 Magnetic Field

The z-component of the magnetic field in M1, shown as a function of x and z. The x-direction is parallel to the beam, while z-direction is transverse to the beam.

