Beam imaging with vertex reconstruction of beam-gas interactions

Plamen Hopchev (CERN BE-BI-BL) Major contributions by C. Barschel and M. Ferro-Luzzi

9th DITANET Topical Workshop on Non-Invasive Beam Size Measurement for High Brightness Proton and Heavy Ion Accelerators

16 April 2013

Process	Products	Measure with
Ionisation	Electrons/ions	MCP / Anode / Phosphor screen + photon detector

Process	Products	Measure with
Ionisation	Electrons/ions	MCP / Anode / Phosphor screen + photon detector
Fluorescence	Photons	Photon detector (CCD camera, PM)

Process	Products	Measure with	
Ionisation	Ionisation Electrons/ions MCP / Anode / Phose screen + photon dete		
Fluorescence	Photons	Photon detector (CCD camera, PM)	
Inelastic collision (QCD)	Charged particles	Tracking detector	

1 Inelastic beam gas interactions

2 LHCb beam gas vertexing results (some highlights)

BGV – Beam Gas Vertexing project
 development of a new monitor for the [HL]LHC

Rate of inelastic interactions

Rate of inelastic beam-gas interactions per bunch:

$$R_{\text{inel}} = \int_{z=z_1}^{z=z_2} \rho(z) \, \mathrm{d}z \cdot \sigma_{\text{pA}}(E) \cdot N \cdot f_{\text{rev}}$$

- $\rho(z)$ gas density
- $\label{eq:constraint} \begin{array}{l} \bullet \mbox{ Inelastic proton-nucleus } \\ \mbox{ cross-section } \\ \sigma_{\rm pA}(E) \approx \sigma_{\rm pp}(E) \cdot {\rm A}^{2/3} \\ \mbox{ A- atomic mass } \\ \mbox{ In the case of 20Ne: } \end{array}$
 - $\sigma_{\rm pNe}(450~{\rm GeV})=243~{\rm mb}$
 - $\sigma_{\rm pNe}(7 \text{ TeV}) = 295 \text{ mb}$
- *N* number of protons per bunch
- *f*_{rev} bunch revolution frequency, 11.245 kHz

At the LHC, pressure of a few $\times 10^{-8}$ mbar over 1 m is needed to get $R_{\rm inel} = 50$ Hz

Charged particles multiplicity

- Here, "charged particles" = long-lived charged particles produced in a beam gas interaction
 - The more we detect, the better precision we get on the position of the interaction
- Comparison of the average number of charged particles

- Distribution of the number of charged particles
- Comparison of simulations with measurements of previous experiments
 - p H collisions: reasonable agreement
 - p ion collisions: to be made

Angular distribution

In a beam-gas collision, the products fly in the direction of the incoming projectile

- Use Monte Carlo simulations to study different target gasses
 - HIJING generator for targets heavier than H
 - LHCb computing framework

• Pseudorapidity \Leftrightarrow polar angle $(\eta \Leftrightarrow \theta)$: $\eta = -\ln\left(\tan\frac{\theta}{2}\right)$

Different rapidity shift depending on the target gas and the beam energy. The pseudorapidty distributions are relatively broad.

1 Inelastic beam gas interactions

2 LHCb beam gas vertexing results (some highlights)

BGV – Beam Gas Vertexing project
 development of a new monitor for the [HL]LHC

- Method proposed in 2005 [NIM A 553, 3 (2005) 388]
 - Novel method for absolute luminosity determination
- Applied for a first time in LHCb (2009) [arXiv:1008.3105 [hep-ex]]
- 2010 lumi results in agreement with the "van der Meer scan" method (rel. errors < 5 %)

[arXiv:1110.2866v2 [hep-ex]]

- Will show examples of LHCb beam measurements:
 - o position
 - angle
 - width
 - relative bunch populations
 - ghost charge

- Dedicated to b-physics
- Single arm spectrometer, covers $\eta \in [2,5]$
- **Design luminosity:** 2×10^{32} cm⁻² s⁻¹ (2 fb^{-1} per year)
 - low probability for multiple interactions per bunch-crossing
- The VErtex LOcator (VELO) is the main system used in the beam-gas measurements

VELO and beam gas interactions

- Reconstruct the tracks from beam-gas interactions
- Accumulate vertices ⇔ statistical precision
- Fit to a line \Rightarrow determine position and angle
- Project \Rightarrow determine width

Neon injection system (SMOG)

Bunch width evolution

Figure: C. Barschel Ph.D. thesis, in preparation

Fill 3060 (LHC MD), BEAM 1 BID \equiv Bunch ID

Plamen Hopchev / Beam Gas Vertexing

Bunch width evolution

Figures: C. Barschel Ph.D. thesis, in preparation

Fill 3060 (LHC MD), BEAM 1, zoom on BID 1 & 3

Bunch width evolution

Figure: C. Barschel Ph.D. thesis, in preparation

Fill 3060 (LHC MD), BEAM 2

Relative bunch populations

Figure: C. Barschel Ph.D. thesis, in preparation

FBCT = Fast Beam Current Transformer (measure individual bunch intensities)

Ghost charge evolution

Figures: C. Barschel Ph.D. thesis, in preparation

LHCb measurement compared to DCCT–sum(FBCT), fill 2523

DCCT = DC Current Transformer (measure total beam current, precise absolute scale)

Ghost charge vs BID

Figure: C. Barschel Ph.D. thesis, in preparation

- Having the 2-d profile of the beam allows more detailed studies to be made
 - Used in more recent LHCb analyses
- Dynamic range for bunch tails: needs more studies
 - Higher gas pressure and a trigger would allow high resolution studies; systematic effects may become important
- An additional timing detector would allow to measure the longitudinal profile

1 Inelastic beam gas interactions

2 LHCb beam gas vertexing results (some highlights)

3 BGV – Beam Gas Vertexing project – development of a new monitor for the [HL]LHC

BGV design studies

As a minimum, need 2 or 3 measuring planes

Need a dedicated pressure bump

BGV design studies

As a minimum, need 2 or 3 measuring planes

Collaborating with EPFL/ CERN-PH for the design/ construction of detector + read-out

Need a dedicated pressure bump

Detector acceptance

Determine the position and the size of the sensors, needed to cover certain

- Range of angles $[heta_{\min}, heta_{\max}]$
- Target length L_{gas}

Aim at minimal r₁

Example values used in our study:

- ▶ $L_{gas} = 1000 \text{ mm}$
- $\bullet \ \theta_{\min} = 14 \text{ mrad} \\ (\eta_{\max} = 5)$

$$\theta_{\max} = 100 \text{ mrad} (\eta_{\min} = 3)$$

Plamen Hopchev / Beam Gas Vertexing

Tracking precision

The impact parameter (IP) resolution, $\sigma_{\rm IP},$ is determined by:

- $\sigma_{\rm MS}$ IP induced by multiple scattering (MS)
- σ_{extrap} IP induced by detector hit resolution

$$\sigma_{\rm IP}^2 = \sigma_{\rm MS}^2 + \sigma_{\rm extrap}^2$$

$$\sigma_{\rm MS} \approx r_1 \, \frac{13.6 \; {\rm MeV}}{p_T} \, \sqrt{\frac{x}{X_0}} \qquad \qquad \sigma_{\rm extrap} \approx \sqrt{\frac{z_1^2 + z_2^2}{(z_2 - z_1)^2}} \cdot \sigma_{\rm hit}$$

Vertexing precision

• The vertex resolution depends on the z position too

Initial estimates of what is achievable, based on current knowledge

Values apply for 0.45 to 7 TeV

Quantity	Accuracy	Time interval	Key factors
Relative bunch width	5~%	< 1 min	vertex resolution stability
Absolute average beam width	2 %	$< 1 \min$	$\sigma_{ m beam}, \sigma_{ m MS}, \ \sigma_{ m extrap} \left(\sigma_{ m hit} ight)$

- Of global importance: Rate of "good" events (acceptance, gas type, gas pressure)
- * Assuming $\delta eta / eta = 3.5 \ \% \ \Rightarrow \delta \epsilon_{
 m beam} / \epsilon_{
 m beam} = 5.3 \ \%$

Past and current contributors

BE-BI: B. Dehning, P. Hopchev, R. Jones, M. Kuhn F. Roncarolo, M. Sapinski, G. Trad, R. Veness
BE-ABP: M. Giovannozzi TE-VSC: V. Baglin, G. Bregliozzi, M. Jimenez
CERN-PH (LHCb): C. Barschel, M. Ferro-Luzzi, R. Jacobsson, R. Matev, J. Panman EFPL: A. Bay, G. Haefeli and other collaborators

$\mathsf{EPFL}\,/\,\mathsf{PH} \Rightarrow \mathsf{LHC}\;\mathsf{BGV}$

- EPFL is developing Scintillating Fibre (SciFi) replacement modules for the LHCb silicon Inner Tracker (LS1)
- LHCb is considering to use long SciFi modules for the Upgrade Tracker (LS2)
- SciFi is a new technology within LHCb ⇒ EPFL eager to test modules in real LHC beam conditions
- The installation of a BGV prototype detector for one ring requires considerable equipment and manpower

Slide by M. Ferro-Luzzi – Possible detector module

Slide by M. Ferro-Luzzi – Possible detector module

Plamen Hopchev / Beam Gas Vertexing

- The prototype phase of the BGV project is approved and funded by HL-LHC
- The proposal for a prototype installation on one beam at the LHC is supported by LMC
 - Green light to start negotiating the schedule with the electric and vacuum teams
 - System design and construction in parallel
- Working towards an installation of a BGV prototype either in LS1 or, as a minimum, in subsequent technical stops

BGV TWiki: https://twiki.cern.ch/twiki/bin/view/BGV/WebHome

Additional Slides

Plamen Hopchev / Beam Gas Vertexing

Data rates

Assume

- Achieve a raw beam-gas rate of max 1 MHz => can trigger with a simple activity trigger (scintillator pad)
- R_{L0} = level-0 trigger rate < ~1 MHz</p>
- t_{hlt} = avge time to take HLT decision
- N_{cpu} = nr of CPU cores available in HLT
- □ e.g. for N_{cpu} ~ 100 we need to achieve

 $t_{hlt} < N_{cpu} / R_{L0} = 0.1 \text{ ms}$

important to use a well localized target

- need to be smart... multi stage approach: (1) request high hit multiplicity, (2) simple projective zvtx location from cluster info (no tracking), (3) full reconstruction...
 - the higher the purity of the raw rate, the more relaxed the HLt algo

Data rate:

- HLT rate out R_{hit} = depends on cuts applied, say ~ 1kHz to tape
- Cluster info = say 14 bits for the channel, 3 bits for the interchannel distance
- Event size = ~ 17bits/clus * 10 clus/plane/evt * 6 planes = 1 kbit/evt + overhead!

0.2 MB/s * 10⁷ s/yr = 2 TB/yr

=> think about histos, store only fraction a fraction of the full data

Modules/beetles

- □ Each module is a «double» mattress with 3 Beetles per side.
- Assume either 16 / 24 modules
 - 96 / 144 Btl
- Considered three possibilities:
 - VELO like readout: 4 Btl/drv, 4 drv/rpt, 4Btl/Arx, 4Arx/Tell1 => 6 / 9 Tell1
 - IT like readout: 3 Btl/dig, 12Btl/Orx, 2Orx/tell1 => 4 / 6 Tell1
 - «Upgrade» readout: 96 Btl into one Tell40, requires new optical intreface boards...
- Retained as baseline: VELO like readout
 - Advantages:
 - EPFL/CERN «know-how» of all the front-end and back-end boards
 - Most components readily available
 - Full support available until at least LS2
 - Possibility to recycle LHCb IT in LS2 (very similar to VELO)

Slide by M. Ferro-Luzzi – Possible DAQ/CTRL Scheme

CERN

Slide by M. Ferro-Luzzi – Preliminary detector inventory

Value of detector + readout equipment APPROXIMATE

					LCHE
Part	quantity	cost/ pc	cost all	provenience	KOHF
Module (= 2 mattresses)	16	1	16	EPFI	
Beetle FE chips (encaps)	96	0.1	10	EPFI	- (
Beetle PCBs	32	0.1	3.2	EPFI	-
RPT	6	0.8	4.8	EPFI	-
RPT crate	2	0.6	1.2	EPFI	_ □
ECS	6	0.5	3	CERN/PH	1
LVreg	6	0.5	3	EPFI	-
Drv	24	0.3	7.2	EPFI	-
analog cables 60m	24	0.25	6	CERN/PH	1 🗆
TELL1 (+ccpc+gbe)	6	5.1	30.6	EPFI	
Arx	24	0.35	8.4	EPFI	
CTRL	1		10	CERN/PH	1
specs slave	1		2	CERN/PH	1
ттс	1		2	CERN/PH	1
delay	1		1	CERN/PH	1
specs master	1		2	CERN/PH	1
Readout Sup	1		10	CERN/PH	1
TTCex	1		5	CERN/PH	1 🗆
VME 9u	1		10	CERN/PH	1
VME 6u	1		5	CERN/PH	1
LVPS	1		5	CERN/PH	1
HVPS	1		5	CERN/PH	1
Beam-gas Imaging for LHC	27-Ma	r-2013		CERN	

fibres:

- 0.3m*5*384*32=18km 6 kCHF
- SiPM: 0.8kCHF*96= 8kCHF

To be refined

 But the bottom line is that this amounts to something of the order of

total ~ 150kCHF

- Yet to be added:
 - L0 detect & trigger
 - HLT/DAQ hardware

- Densities (averaged over 1m) that would be needed for the BGV to work adequately for some representative gas types
- $\bullet~{\rm F}_{\rm good}$ is the fraction of events producing at least 10 tracks in the acceptance of small-size detector

Gas type	Α	F _{good} ρ [10 ⁷ cm ⁻³]		p at 293 K [10 ⁻⁹ mbar]
Hydrogen	1	0.002	5800	2300
Neon	20	~0.020#	160	64
CO ₂	16*	0.020*	60	25
Xenon	131	0.140	7	2.6

Gas target design (2)

Possible layout and pressure profile simulations – G. Bregliozzi

β , Nominal Optics

CERN

Application of the method in other machines?

- Not obvious if the method can be applied in a non-hadron collider
 - Expect much lower inelastic cross-section
 - Electron beams have much lower size
- Lower center-of-mass energy of the collisions results to lower charged particle multiplicity
 - Need a dedicated study/simulations of the expected fraction of "good" events
- Smaller accelerator radius \Rightarrow higher $f_{rev} \Rightarrow$ higher beam-gas rate per bunch
- Short accelerator cycles (say, 1 s) may be a problem for bunch-by-bunch measurements

parameter	PS		LHC		
	1.5 GeV	20 GeV	450 GeV	7000 GeV	
Δz [cm]	100				
$\sigma_{ m pNe}^{ m inel}$ [mb]	147	228	295		
N_p / bunch	1.5×10^{11}				
$f_{ m rev}$ [kHz]	477	7.7	11.245		
pressure [mbar]	10^{-7}				
$R_{ m inel}$ [Hz]	2633	4084	102	124	