

Optical Diffraction Radiation for the Large Hadron Collider

T. Aumeyr, M. Billing, L. Bobb, B. Bolzon, E. Bravin, N. Chritin, P. Karataev, T. Lefevre *, S. Mazzoni

8th Ditanet Workshop on Non-Invasive Beam size Measurement for Hadrons Accelerators, CERN, 15-19th April 2013

Diffraction Radiation

- Theory
- Beam size monitoring
- Data from past experiments
- Already Known limitations

Current Activities on DR

- Simulation tools
- Target developments
- Experimental test on CESR ring @ Cornell

Considerations for LHC

Diffraction Radiation

Diffraction radiation (DR) appears when a charged particle moves in the vicinity of a dielectric medium

Diffraction Radiation

Light intensity as function of Impact parameter

Most recent experiments using Optical Diffraction Radiation

A.H. Lumpkin, W. J. Berg, N. S. Sereno, D. W. Rule and C. –Y. Yao, "Near-field imaging of optical diffraction radiation generated by a 7-GeV electron beam", Phys. Rev. ST Accel. Beams 10, 022802 (2007).

 E. Chiadroni, M. Castellano, A. Cianchi, K. Honkavaara, G. Kube, V. Merlo and F. Stella, "Non-intercepting Electron Beam Transverse Diagnostics with Optical Diffraction Radiation at the DESY FLASH Facility", Proc. of PAC07, Albuquerque, New Mexico, USA, FRPMN027.

P. Karataev, S. Araki, R. Hamatsu, H. Hayano, T. Muto, G. Naumenko, A. Potylitsyn, N. Terunuma, J. Urakawa, *"Beam-size measurement with Optical Diffraction Radiation at KEK Accelerator Test Facility"*, Phys. Rev. Lett. 93, 244802 (2004).

 $\sigma_y = 14 \ \mu m \ measured$ ATF2@KEK

Direct imaging on Diffraction Radiation from a single edge

A. Lumpkin et al, Measured at APS booster dump line

Images

FIG. 4. (Color) Images produced by the 7-GeV beam: (a) OTR with Q = 0.4 nC and (b) ODR with d = 1.25 mm and Q = 3.3 nC. The dashed line is the beam centerline.

FIG. 7. Comparison plots of a Gaussian fit to the OTR beam distribution for $\sigma_y = 200 \ \mu \text{m}$ centered at d = 0, the d = 1000 (dotted line) and 1250 μm (solid line) ODR image vertical profiles, and the Eq. (1) model result (dashed line) scaled to the vertical profile data.

Using an Horizontal slit to measured the horizontal beam size using vertically polarized photons

Direct imaging on Diffraction Radiation from a single edge

A. Lumpkin et al, Measured at APS booster dump line

- Observed 5 to 25% mismatch in beam sizes measured with OTR
- Contribution of OTR from halo particles to the ODR images ?
- No mask to suppress Sync light

Observing the interference pattern produced as the particles passes through a slit

Image measured at ATF/KEK

Vertical beam size measured from vertically polarized photons emitted by a horizontal slit

Vertical Beam Size Measurement using the Optical Diffraction Radiation (ODR) model + Projected Vertical Polarisation Component (PVPC)

Interference with SR

For ultra-relativistic beam, the formation length of the radiation becomes large and the SR photons emitted from neighboring magnet will interfere with DR

Source of background	Contribution	
SR from beam-line optics	High	
Camera noise	Low	
Residual background	LOW	

Use a mask upstream of target to suppress SR contribution.

P. Karataev et al., Proc. of EPAC 2004, THPLT067

Interference with SR

0.002

-0.00

0.000

 Θ [rad]

0.001

0.0

-0.002

Requirements for the slit

• At high-energy, Pre-wave zone expands significantly

$$L > 10 \frac{\gamma^2 \lambda}{2\pi} \qquad \qquad L > \qquad 32 \text{cm} \qquad 78 \text{m}$$

• To eliminate it, the camera must be placed in the back focal lane of a lens

Minimal Lens Diameter: $D > 20 \frac{\gamma \lambda}{2\pi} + \frac{L}{\gamma}$ D >3.6mm22mmMinimal Target Diameter: $T_D > 20 \frac{\gamma \lambda}{2\pi}$ $T_D >$ 1.5mm22mm

Current Activities

• Simulation tools

• Target developments

• Experimental validation on CESR ring at Cornell

- Using the DR field 2D distribution generated by single particle at the source position as an input file to Zemax (done using a user dll defining a 2D matrix)
- •Running ZEMAX in the Physical Optic Propagation Mode which propagates the fields through the optical system using the Kirschoff's law of diffraction
- Comparing Zemax simulations with an analytical model developed by P. Karataev in 2004

$$\frac{d^{2}W_{y}^{\text{slit}}}{d\omega d\Omega} = \frac{\alpha \left|R_{y}\right|^{2}}{4\pi^{2}} \frac{\exp\left(-\frac{2\pi a \sin \theta_{0}}{\lambda} \sqrt{\gamma^{-2} + \theta_{x}^{2}}\right)}{\gamma^{-2} + \theta_{x}^{2} + \theta_{y}^{2}} \times \left\{ \exp\left[\frac{8\pi^{2}\sigma_{y}^{2}}{\lambda^{2}} \left(\gamma^{-2} + \theta_{x}^{2}\right)\right] \cosh\left[\frac{4\pi a_{x}}{\lambda} \sqrt{\gamma^{-2} + \theta_{x}^{2}}\right] - \cos\left[\frac{2\pi a \sin \theta_{0}}{\lambda} \theta_{y} + 2\psi\right] \right\}$$
with $\psi = \arctan\left(\frac{\theta_{y}}{\sqrt{\gamma^{-2} + \theta_{x}^{2}}}\right)$

Far-field conditions

Angular distribution fully defined for distance > 10m

Far-field conditions

Good agreement with the analyical model

Radial size of the Target

0

Biconvex lens

Using a Biconvex lens to extract the DR angular distribution in near field conditions

Biconvex lens

Angular distribution is retrieved as in Far-field case once the detector is positioned in the real back focal plane (changing for different wavelength)

With Viewport, Mirror, Bandpass filter, Polariser, Lenses

	emax 13 IE - 34988 - E:\CES	nax 13 IE - 34988 - E\CESR-ODR Zemax\DR achrom lens VIS mod.ZMX											
	Ope Sav Sas Bac	Res LDE MFE		Upd Upa Gen F	ie Wav Lay	L3d Lsh Ray Opd	Spt Mtf Fps Rms E	Enc Opt Glb H	Ham Tol Gla	Len Sys Pre Chk	Vop		
							· · · · · · ·				<u> </u>		
Int the week Best Type To the local set of the se	婆 Lens Data Editor												
	Edit Solves View He	elp											
001 5100 510 510	Surf:Type	Comment	Radius	Thickness	Glass	Semi-Diameter	Par 1 (unused)	Decenter Y	Tilt About X	Tilt About Y	Tilt About Z	Order	
Image of the series	OBJ Standard		Infinity	192.700		4.000							
1 10 10 10 10 00 40.00 0.00 </td <td>* Standard</td> <td></td> <td>Infinity</td> <td>3.300</td> <td>QUARTZ</td> <td>10.000 U</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	* Standard		Infinity	3.300	QUARTZ	10.000 U							
Image	2 Standard		Infinity	103.000		7.100							
4 100 118800 16.7.02 0.000	3 Coordinat	-45		0.000	-	0.000	0.000	0.000	-45.000	0.000	0.000	0	
Socializat -45 -12.600 0.000 0.000 0.000 -45.000 0.000 <td>4 Standard</td> <td>FOLD MIRROR</td> <td>Infinity</td> <td>0.000</td> <td>MIRROR</td> <td>16.702</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	4 Standard	FOLD MIRROR	Infinity	0.000	MIRROR	16.702							
e bit standard Standard P bit standard Standard P bit standard Standard P bit standard P	5 Coordinat	-45		-82.600	-	0.000	0.000	0.000	-45.000 H	P 0.000	0.000	o	
1 10 <th10< th=""> 10 10 1</th10<>	6* Standard	AC254-150-A	-91.620	-5.700	N-BK7	12.700 U							
et 58 dadada 38 dadada 19 data 197.700 -12.500 12.700 U 12.700 U 12.800 U 10 U	7* Standard		66.680	-2.200	SF5	12.700 U							
et Extended NO. Titler Fains -7.000 12.000	8* Standard	C 11.	197.700	-12.500		12.700 U							
10 Standast Infinity -91.780 14.424 Infinity -91.780 Infinity -20.000 Infinity Infinity -20.000 Infinity -20.000 Infinity Infinity -20.000 Infinity Infinity -20.000 Infinity Infinity -20.000 Infinity Infinity Infinity Infinity Infinity -20.000 Infinity	9* Standard	No filte	Infinity	-7.000		12.500 U					🧐 1: 3D Layout		
121 Standard -20.000 GALCITE 10.073 123 Standard Infinity -20.000 GALCITE 10.078 123 Standard Infinity -20.000 GALCITE 10.078 124 Standard Infinity -20.000 GALCITE 10.078 124 Standard Infinity -20.000 -20.000 GALCITE 10.078 128 Standard Infinity -20.000 -20.000 GALCITE 10.078 128 Standard Infinity -20.000 -20.000 GALCITE 10.078 128 Made Infinity -20.000 -20.000 -20.000 9.000 0.000 128 Made 2 -0 -1.300 1.000 9.043 9.078 1298 Matrix BLAR BLAR <td< td=""><td>10 Standard</td><td></td><td>Infinity</td><td>-91.750</td><td></td><td>14.824</td><td></td><td></td><td></td><td></td><td>Update Settings Pri</td><td>int Window Text Zoom</td><td></td></td<>	10 Standard		Infinity	-91.750		14.824					Update Settings Pri	int Window Text Zoom	
12* Stendard Infinity 0.000 10.018 Infinity Infinity 0.000 10.018 Infinity Infinity 0.000 10.018 Infinity Infinity 0.000 10.018 Infinity 0.000 0.000 Infinity Infinity 0.000 Infinity 0.000 Infinity 0.000 Infinity	11* Standard	Polarise	er>	-20.000	CALCITE	10.573							
13 Standard Infinity 120.967[3 10.031 10.031 141 Standard Infinity 120.967[3 20.069 10.010 10.010 15 Standard Infinity Infinity 20.069 10.010 10.0	12* Standard		Infinity	0.000		10.018							
TAB Standard Infinity Infinity <thinfinity< th=""> <thinfinity< th=""> Infini</thinfinity<></thinfinity<>	13 Standard		Infinity	-118.967 V		10.018							
Image at 118.94 mm Image at 120 mm	IMA Standard		Infinity	-		2.569							
Ment Function Editor 22119996-001 From polariser Edit Dright Tools View Help Image: Target Neight Value Contrail Oper # Type 11 PMAG 2 12 PMAG 2 13 ELRK BLINK Default merit function: RMS spot radius centroid 60 3 rings 6 arms Magnification = -0.6447 4: ELNK BLINK Do default air thickness boundary constraints. Image: Target Neight One 6: ELNK BLINK Do default qlass thickness boundary constraints. Image: Target Neight One 6: ELNK BLINK Operands for field 1. 0.000 0.016 0.001 6.500E-004 7: TRAC TRAC 1 0.000 0.0165 0.021 0.001 6.500E-004 9: TRAC TRAC 1 0.000 0.016 0.001 6.500E-004 Image: Target Neight Operands for field 1. 10: TRAC TRAC 1 0.000 0.000 0.016 0.001 6.500E-004 Image: Trade Tr	٠			Image	at 118	8.97 mn	n						
Edit Design Took View Help ITOM DOIATISET Oper # Type Wave Contrib 21 DM75 DM75 Wave Contrib 31 BLMR BLMR/Default air thickness boundary constraints. Magnification = -0.647 31 BLMR BLMR/Default air thickness boundary constraints. Magnification = -0.647 35 BLMR BLMR/Default air thickness boundary constraints. 0.000 36 BLMR BLMR/Default glass thickness boundary constraints. 0.000 37 BLMR BLMR/Dofald 1. 0.000 0.000 0.016 0.013 6.5008-004 38 ILMR BLMR Dofald 1. 0.000 0.000 0.026 0.016 0.013 6.5008-004 39 I TRAC TRAC 1 0.000 0.036 0.026 0.016 0.011 4.2908-004 91 TRAC TRAC 1 0.000 0.026 0.016 0.014 4.2908-004 B.extrm less VI5 sed.50 91 TRAC TRAC 1 0.000 0.000 0.016 0.014 4.2908-004 B.extrm less VI5 sed.50 92 TRAC TRAC 1 0.000 0.000 0.001	Merit Function Editor:	3.211969E-001		£	la uta i								
Oper # Type Nave Target Neight Value * Contrib 11 PNAS	Edit Design Tools V	iew Help		Trom p	olarise	er							
1: PRAG PRAG 2 -1.300 1.000 -0.647 99.743 2: DMPS DMPS 2 Magnification = -0.647 99.743 3: BLHK BLMK Default merit function: RMS spot radius centroid 6Q 3 rings 6 arms Magnification = -0.647 4: BLMK BLMK No default air thickness boundary constraints. State of the state of t	Oper #	Type	Wave					Target	Weight	Value	% Contrib	×	
2: DMFS DMFS Automatic Status Automatic Status Magnification = -0.647 4: BLHK BLHK befault merit function: RMS spot radius centrol GQ 3 rings 6 arms Magnification = -0.647 4: BLHK BLHK No default airt function: RMS spot radius centrol GQ 3 rings 6 arms Magnification = -0.647 4: BLHK BLHK No default airt function: RMS spot radius centrol GQ 3 rings 6 arms Magnification = -0.647 6: BLHK BLHK Operands for field 1.	1: PMAG	PMAG		2				-1.30	0 1.00	-0.64	4 <mark>7</mark> 99.74	13	, and the second s
3: BLNK BLNK befault merit function: ENS spot radius centroid 6Q 3 rings 6 arms Magnification = -0.64.7 4: BLNK BLNK No default glass thickness boundary constraints. Stepse for field 1. 5: BLNK BLNK No default glass thickness boundary constraints. Stepse for field 1. 7: TRAC TRAC 1 0.000 0.016 0.013 6.500E-004 8: TRAC TRAC 1 0.000 0.0354 0.612 0.000 0.016 0.011 4.899E-003 9: TRAC TRAC 1 0.000 0.0354 0.612 0.001 0.291 0.001 0.014 0.013 6.500E-004 3D Layout 9: TRAC TRAC 1 0.000 0.354 0.612 0.001 0.291 0.001 4.290E-004 0.01 4.290E-004 0.01 4.290E-004 0.01 4.290E-004 0.01 4.290E-004 0.001 0.002 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.001 0.001 <td>2: DMFS</td> <td>DMFS</td> <td></td> <td>LIII)</td>	2: DMFS	DMFS											LIII)
4: BLNK BLNK No default air thickness boundary constraints. 5: BLNK BLNK No default glass thickness boundary constraints. 6: BLNK BLNK Operands for field 1. 7: TRAC TRAC 9: TRAC TRAC 10: TRAC 1 0:000 0.000 0:000 0.000 0:10: TRAC 1 0:000 0.000 0	3: BLNK	BLNK	Default merit fu	unction: RMS spot	radius centroi	d GQ 3 rings 6 an	rms	Magi	niticatio	on = -0	647		
S: BLNK BLNK No default glass thickness boundary constraints. 6: BLNK BLNK Operands for field 1. 7: TRAC TRAC 1 0.000 0.016 0.013 6.500E-004 8: TRAC TRAC 1 0.000 0.0354 0.612 0.000 0.016 0.011 1.889E-003 9: TRAC TRAC 1 0.000 0.046 0.016 0.011 4.290E-004 3D Layout 10: TRAC TRAC 1 0.000 0.336 0.000 0.016 0.013 6.500E-004 BR achrom less VIS mod.280 10: TRAC TRAC 1 0.000 0.336 0.000 0.016 0.013 6.500E-004 BR achrom less VIS mod.280 (TRAC TRAC 1 0.000 0.336 0.000 0.016 0.013 6.500E-004 BR achrom less VIS mod.280 (TRAC TRAC 1 0.000 0.000 0.000 0.016 0.013 6.500E-004 BR achrom less VIS mod.280 (TRAC TRAC 1 0.000 0.000 0.000 0.000	4: BLNK	BLNK	No default air 1	thickness boundar	ry constraints.					••••••			
6: BLNK Deprands for field 1. 7: TRAC TRAC 1 0.000 0.166 0.291 0.000 0.016 0.013 6.500E-004 8: TRAC TRAC 1 0.000 0.0354 0.612 0.000 0.016 0.011 4.290E-004 9: TRAC TRAC 1 0.000 0.000 0.016 0.011 4.290E-004 10: TRAC TRAC 1 0.000 0.336 0.000 0.016 0.013 6.500E-004 10: TRAC TRAC 1 0.000 0.336 0.000 0.016 0.013 6.500E-004 10: TRAC TRAC 1 0.000 0.336 0.000 0.016 0.013 6.500E-004 DR achrom lens VIS mod.299 (0.000 0.00	5: BLNK	BLNK	No default glass	s thickness bound	lary constraints								
7: TRAC TRAC 1 0.000 0.168 0.291 0.000 0.018 0.013 6.500E-004 8: TRAC TRAC 1 0.000 0.0354 0.612 0.000 0.026 0.018 1.899E-003 3D Layout 9: TRAC TRAC 1 0.000 0.000 0.461 0.000 0.016 0.011 4.290E-004 3D Layout 10: TRAC TRAC 1 0.000 0.000 0.336 0.000 0.016 0.013 6.500E-004 3D 10: TRAC TRAC 1 0.000 0.000 0.336 0.000 0.016 0.013 6.500E-004 3D 10: TRAC TRAC 1 0.000 0.336 0.000 0.000 0.016 0.013 6.500E-004 B Berly	6: BLNK	BLNK	Operands for fie	eld 1.									
8: TRAC 1 0.000 0.354 0.612 0.000 0.026 0.018 1.889E-003 3D Layout 9: TRAC 1 0.000 0.000 0.471 0.816 0.000 0.011 4.290E-004 1 1 0.000 0.612 0.000 0.013 6.500E-004 1 BR achron lens VIS mod.200 Configuration 1 of DR achron lens VIS mod.200 Configuration 1 of Configuration 1 of Configuration 1 of Configuration 1 of TOTR:340.717	7: TRAC	TRAC	:	1 0.000	0.00	0.16	0.291	0.00	0 0.01	.6 0.01	13 6.500E-00	94	L
9: TRAC TRAC 1 0.000 0.471 0.816 0.000 0.016 0.011 4.290E-004 10: TRAC TRAC 1 0.000 0.336 0.000 0.016 0.013 6.500E-004 DR ehron less VIS mod 200 10: TRAC TRAC 1 0.000 0.336 0.000 0.016 0.013 6.500E-004 DR ehron less VIS mod 200 10: TRAC TRAC 1 0.000 0.000 0.336 0.000 0.016 0.013 6.500E-004 DR ehron less VIS mod 200 10: TRAC TRAC 1 0.000 0.000 0.000 0.016 0.013 6.500E-004 DR ehron less VIS mod 200 10: TRAC TRAC 0.000 <	8: TRAC	TRAC		1 0.000	0.00	0.35	4 0.612	0.00	0 0.02	26 0.01	1.889E-00	3 3D Layout	
10: TRAC 1 0.000 0.336 0.000 0.016 0.013 6.500E-004 B B B B B Configuration 1 of Configurati	9: TRAC	TRAC	:	1 0.000	0.00	0.47	0.816	0.00	0 0.01	16 0.01	11 4.290E-00	94	
Final a cool a cool <td>10: TRAC</td> <td>TRAC</td> <td>:</td> <td>1 0.000</td> <td>0.00</td> <td>0.33</td> <td>6 0.000</td> <td>0.00</td> <td>0 0.01</td> <td>.0.01</td> <td>13 6.500E-00</td> <td>94</td> <td></td>	10: TRAC	TRAC	:	1 0.000	0.00	0.33	6 0.000	0.00	0 0.01	.0.01	13 6.500E-00	94	
EFFL: 149.976 WFN0: 12.3976 ENPD: 10 TOTR: 340.717	<			• • • • •		· · · · · · · · · · · · · · · · · · ·			al a aa				DR achrom lens VIS mod.2MX Configuration 1 of
EFFL: 149.976 WFN0: 12.3976 ENPD: 10 TOTR: 340.717													
EFFL: 149.976 WFN0: 12.3976 ENPD: 10 TOTR: 340.717													
EFFL: 149.976 WFNO: 12.3976 ENPD: 10 TOTR: 340.717													
EFFL: 149.976 WFNO: 12.3976 ENPD: 10 TOTR: 340.717													
FFH: 149.976 WFNo: 12.3976 ENPD: 10 TOTR: 340.717					1								
				11	EFFL	: 149.9/6		WENO: 12.3976		ENPD:	10	10 TR: 340.717	

Simulating by how much the position of the image plane changes if using filter and polarizer

Target developments

Requirements:

Silicon wafer 8mmx35mm Aperture size of 0.5mm and 1mm High precision slit size: +/-5 μ m Coplanarity $\leq \lambda/10$ (~50nm) Roughness better than $\lambda/100$

Section view A-A Scale: 10:1

- \bullet Chemically etched slit: $500 \mu m$ thickness maximum
- Slits assembled by molecular adhesion: 1.5mm thick

Target developments

- Target aperture ~ within specifications +/-7 μm
- Target Roughness good: mean value better than 2nm
- Target co-planarity: not reproducible: PV never better than 600nm: can be as bad as $10\mu m$ and possibly large tilt angles (up to $500\mu rad)$

TARGET SUPPORT 1mm

Target developments

Molecular adhesion Targets

- Target aperture within specifications +/-3 μ m
- Target Roughness good: mean value better than 2nm
- Target co-planarity reproducible with PV better than 70nm and an r.m.s value as good as 10nm

Molecular adhesion targets are fragile and sensitive to thermal effects

Project aim:

To design and test an instrument to measure on the micron-scale the transverse (vertical) beam size for the Compact Linear Collider (CLIC) using incoherent Diffraction Radiation (DR) at UV/soft X-ray wavelengths.

Cornell Electron Storage Ring Test Accelerator (CesrTA) beam parameters:

	E (GeV)	σ _H (μm)	σ _v (μm)
CesrTA	2.1	320	~9.2
	5.3	2500	~65

D. Rubin et al., "CesrTA Layout and Optics", Proc. of PAC2009, Vancouver, Canada, WE6PFP103, p. 2751.

http://www.cs.cornell.edu

Beam lifetime and beam jitter

M. Billing, "Introduction to Beam Diagnostics and Instrumentation for Circular Accelerators", AIP Conference Proc. 281, AIP 1993, pg.75 ff.

target slit size [mm]	vertical beam size [µm]	beam lifetime [min]
0.1	9.2	2.40
0.5	30	60 (max)
	50	2.22
1.0	50	60 (max)

Technical drawings by N. Chritin Simulations by A. Nosych

E-field magnitude of a single bunch pass in time domain (Gaussian bunch, length = [-4 σ ,4 σ], σ = 10mm)

000

H-field surface tang complex magnitude (Loss map) Mode Fr = 1.19 GHz, Q = 3309, Ploss = 0.075 W

L3 layout @CesrTA

Electron beam direction

- 2 shifts for preliminary tests in December 2012
 - Tested successfully all functionalities Motors Optical system Beam loss monitors
 - Beam lifetime much shorter than expected (approx. 2-3 mins instead of 60mins as expected) due to bad vacuum conditions
 - First observation done using Dummy target observing both DR&TR and SR

Second test period with real slits starting next week-end

DR for LHC

Main requirement:

Non-invasive measurement

Must use target aperture as

- Using proton beam:
 - LHC is relativistic enough..
 - Reduced SR background
 - Larger beam size (0.2um to 2mm)
- Wavelengths in the infrared spectral range (<10.3um)

To do list for DR@LHC

- DR light intensity is not a limitation even for large impact parameters (turn-by-turn, bunch-by-bunch measurement ?)
- Compared to Sync. Light monitor, no limitation from diffraction nor from having an extended source
- Imaging the slit might be enough to monitor the evolution of beam size through the cycle Imaging in far infrared ?
- Sensitivity to beam size using slit interference to be checked carefully Choice of wavelength might be very different at injection and top energy
- Need a precise positioning of the target with respect to the beam (high precision BPM close to the Target)
- Impedance is an issue in LHC Lessons from the LHC sync. light telescope Adequate design of the slit holder and choice of slit material – Temperature effects might be a killer for interference scheme
- Do we need a SR mask in LHC ?
- Will OTR from halo particles degrade the measurements (How much of beam halo to be expected at distances of 10σ or higher) – Measuring OTR at shorter wavelength and compensating for that

- DR has the potential to provide non-invasive beam size measurements for ultra-relativistic beams
- On-going R&D efforts in the framework of CLIC to study ringtype DR monitors
- Still a lot of open questions on how best we can use these devices on LHC – Time for simulations – We have all the tools for that..
- If successful, one would like to design and build a prototype to be tested on SPS, LHC or their transfer lines

Thanks for Lorraine and Tom for most of slides

Thanks you for listenning

Vacuum chamber assembly cont'd

Images taken during assembly at CERN and current testing at Cornell.

Method of Operation

- 1. Alignment of the electron beam with the target aperture:
 - BPMs for centering
 - Target imaging to look for OTR from beam halo
 - Correlate with BLMs:

Summary + Conclusion

- Simulations have demonstrated the feasibility of vertical beam size measurements at CesrTA. The phase 1 experiment is planned for the end of December 2012 for which the design and vacuum assembly are close to completion.
- The design must account for the experiment location in a circular machine. This introduces some advantages and disadvantages not applicable for linacs.
- Preliminary simulations for the phase 2 test aiming for the soft x-ray spectral range have been presented.
- Feasibility of DR diagnostics on other accelerators has been considered such as simulations for transverse beam size measurements at the LHC.

Acknowledgements

I would like to thank J. Barley, J. Conway, J. Lanzoni, Y. Li, T. O'Connell, M. Palmer, D. Rice, D. Rubin, J. Sexton, C. Strohman and S. Wang (@Cornell) for all technical contributions and advice. In addition, O.R. Jones and H. Schmickler for organisation of the collaboration, A. Apyan, E. Bravin, A. Jeff, A. Nosych and S. Vulliez (@CERN) and T. Aumeyr (@RHUL).

Experimental achievements of ODR project

> The first observation of Optical (incoherent) Diffraction Radiation from the target edge (PRL 90, p. 104801, 2003)

➤ The first observation of the ODR interference produced from two edges (slit target) (PRL 93, p. 244802, 2004)

➢ Investigation of basic ODR characteristics from a "semi-plane" and slit targets (angular distribution, wavelength dependence, dependence on impact parameter, etc.) (NIM B 227, p. 158, 2005)

➤ The first observation of the pre-wave zone effect in Diffraction Radiation phenomenon (PR ST-AB 11, p. 032804, 2008)

≻The first application of the Optical Diffraction Radiation for non-invasive transversal beam size measurement (PRL 93, p. 244802, 2004)

Observation of focusing effect in OTR and ODR phenomena (PR ST-AB 12, p. 071001, 2009)

> Single-shot beam size measurement (paper preparation is in progress)

Sub-micrometer resolution OTR monitor based on shape analysis of Point Spread Function (Journal of Physics: Conference Series, 236 (2010) 012008)

Theoretical Considerations

Diffraction radiation from a particle moving through a rectangular hole in rectangular screen (NIM B 227 (2005) 198)

- Resonant polarization radiation from a particle moving trough a tilted grating (and (NIM B 201 (2003) 133))
- Resonant diffraction radiation from a particle moving trough a slit between two identical gratings (NIM B 201 (2003) 201)
- Diffraction radiation in the pre-wave zone (Phys. Lett. A 345 (2005) 428)
- Transition and diffraction radiation from a concave (convex) target (Phys. Lett. A 345 (2005) 428)
- Investigation of the transverse kick caused by an ODR target (NIM B 227 (2005) 170)
- Diffraction radiation from a particle moving trough a double screen system of targets (unpublished)

TARGET SUPPORTS Project : CLIC (ODR BEAM SIZE MEASUREMENT)

Presentation of the metrology results Measurements on 4 items

Controler : Lilian REMANDET <u>lilian.remandet@cern.ch</u> Customer : Lorraine BOBB lorraine.bobb@cern.ch

CONDITIONS OF MEASUREMENT

- Roughness : Measure on optical roughness tester (non-contact) :
 - Roughness tester VEECO NT 3300
 - Optical zoom : x 20
 - Optical lens : x 1
 - Measurement unit : in μm
 - Estimation of uncertainty of measurement : 10 % of the parameter value
- Flatness : Measure on optical roughness tester (non-contact) :
 - Roughness tester VEECO NT 3300
 - Optical zoom : x 2.5
 - Optical lens : x 0.5
 - Measurement unit : in μm
 - Estimation of uncertainty of measurement : 10 % of the parameter value
- Distance : Measure on Optical measuring system :
 - Optical measuring system MAHR Wegu OMS 600
 - Optical zoom : x 40
 - Measurement unit $\,:\,$ in μm
 - Estimation of uncertainty of measurement : $\pm~2~\mu\text{m}$
- Temperature : $20 \pm 1^{\circ}$ C
- Notice : none

DEFINITION OF ROUGHNESS PARAMETERS

Figure 8 — Maximum height of profile (example of a roughness profile) Figure 8 — Hauteur maximale du profil (exemple de profil de rugosité)

maximum profile peak height

Pp, *Rp*, *Wp* largest profile peak height *Zp* within a sampling length

maximum profile valley depth

Pv, Rv, Wvlargest profile valley depth Zv within a sampling length

total height of profile

Pt, Rt, Wt

sum of the height of the largest profile peak height Zp and the largest profile valley depth Zv within the evaluation length

Figure 8 — Maximum height of profile (example of a roughness profile) Figure 8 — Hauteur maximale du profil (exemple de profil de rugosité)

arithmetical mean deviation of the assessed profile

Pa, Ra, Wa

arithmetic mean of the absolute ordinate values Z(x) within a sampling length

$$Pa, Ra, Wa = \frac{1}{l} \int_{0}^{l} |Z(x)| \, \mathrm{d}x$$

with l = lp, lr or lw according to the case.

root mean square deviation of the assessed profile

Pq, Rq, Wq

root mean square value of the ordinate values Z(x) within a sampling length

$$Pq, Rq, Wq = \sqrt{\frac{1}{l} \int_{0}^{l} Z^{2}(x) \, \mathrm{d}x}$$

with l = lp, lr or lw according to the case.

FLATNESS MEASUREMENT – 7V TARGET SUPPORT

um

mm

17

13 14 15 16

0.50

0.00

- -0.50

- -1.00

- -1.50

E -2.10

TARGET SUPPORT 0.5mm

TARGET SUPPORT 1mm

Specification	Location 1 (in µm or in µrad)	Location 2 (in µm or in µrad)	Specification	Location 1 (in µm or in µrad)	Location 2 (in µm or in µrad)
Maximum to minimum	2.74 μm	9.66 µm	Maximum to minimum	0.90 µm	2.34 µm
Tilt in X direction	0 µrad	587.8 µrad	Tilt in X direction	0 µrad	114.1 µrad
Tilt in Y direction	0 µrad	-8.9 µrad	Tilt in Y direction	0 µrad	-6.2 µrad

FLATNESS MEASUREMENT – 7V TARGET SUPPORT

Lilian REMANDET - EN/MME-MM EDMS.1274854

ROUGHNESS MEASUREMENT – 7V TARGET SUPPORT

TARGET SUPPORT 1mm

	Mean:	Std Dev:		
Rq:	4.412 nm	1.334 nm		
Ra:	2.353 nm	0.439 nm		
Rt:	60.493 nm	23.023 nm		
Rp:	39.524 nm	20.573 nm		
Rv:	-20.969 nm	8.660 nm		

	Mean:	Std Dev:
Rq:	1.797 nm	0.594 nm
Ra:	1.217 nm	0.190 nm
Rt:	19.790 nm	13.166 nm
Rp:	8.804 nm	7.706 nm
Rv:	-10.986 nm	9.020 nm

Conditions of measurement

Long C/O: 80.000 um Short C/O: 2.500 um Pc Height: Ra Sample Lengths: 5 X Asmnt: 398.747 um X Lines Used: 500

DISTANCE MEASUREMENT – 7V TARGET SUPPORT

Specification	Average value (in μm)	σ value (in μm)	Number of values	Specification	Average value (in μm)	σ value (in μm)	Number of values
1 mm	1003,7	8.5	9	1 mm	1002.7	6.7	16
0.5 mm	501.9	7.0	5				

TARGET SUPPORT 0.5mm

TARGET SUPPORT 1mm

Specification	Location 1 (in µm or in µrad)	Location 2 (in µm or in µrad)	Specification	Location 1 (in µm or in µrad)	Location 2 (in µm or in µrad)
Maximum to minimum	0.64 µm	0.62 μm	Maximum to minimum	1.12 μm	4.58 μm
Tilt in X direction	0 µrad	-17.6 µrad	Tilt in X direction	0 μrad	229.1 µrad
Tilt in Y direction	0 µrad	37.9 µrad	Tilt in Y direction	0 µrad	-2.7 μrad

FLATNESS MEASUREMENT – 2V TARGET SUPPORT

ROUGHNESS MEASUREMENT – 2V TARGET SUPPORT

TARGET SUPPORT 1mm

Std Dev:

1.161 nm 0.343 nm

21.663 nm 17.863 nm

8.375 nm

	Mean:	Std Dev:
Rq:	3.571 nm	1.737 nm
Ra:	1.917 nm	0.448 nm
Rt:	49.328 nm	32.167 nm
Rp:	33.038 nm	29.166 nm
Rv:	-16.290 nm	6.587 nm

	Mean:
Rq:	3.331 nm
Ra:	1.801 nm
Rt:	47.253 nm
Rp:	28.946 nm
Rv:	-18.306 nm

Conditions of measurement

Long C/O: 80.000 um Short C/O: 2,500 um Pc Height: Ra Sample Lengths: 5 X Asmnt: 398.747 um X Lines Used: 500

DISTANCE MEASUREMENT – 2V TARGET SUPPORT

Specification	Average value (in μm)	σ value (in μm)	Number of values	Specification	Average value (in μm)	σ value (in μm)	Number of values
1 mm	997.7	7.6	9	1 mm	993.5	7.7	16
0.5 mm	498.9	7.3	5				