

T.Giacomini, P.Forck, GSI, Darmstadt, Germany

- IPMs in GSI rings
- Application of GSI IPMs (who use them and what for exp.)
- Beam profiles
- Different IPM readouts / designs
- Current and future IPM developments at GSI for FAIR.

FAR HELMHOLTZ ASSOCIATION GSI IPMs in Rings – SIS & ESR S I

IPM Design for SIS18

-(

-

-

-1

-6

-(

-

-

-

-

-(

FAIR

HELMHOLTZ

SIS18 parameter:

circumference	216	m
periodes	12	
pending power	18	Tm
nject. energy	11.4	AMeV
extr. en. (U78+)	1	AGeV
extr. en. (p)	4.7	AGeV
lons per cycle	1.3×10^{11}	(Ne, Ar)
lons per cycle	$1 x 10^{10}$	(U28+)
lons per cycle	$10^8 - 10^{10}$	^o typ.
frequ. / time	217 kHz	/ 4.6 µs @ inj.
	1.2 MHz	/ 0.8 µs @ 1GeV
vacuum	10-11	mbar
electron cooler		

- -multi turn injections
- -slow / fast extraction

- **ES 55 1**

FAIR HELMHOLTZ ASSOCIATION

GSI SIS18 Operation

Week 16

15 16 17 18 19 20 21

Week 17

26 27

5

25

23 24

22

SIS18 Operation:

- different sorts of ions from different sources alternately in the SIS18 accelerated
- different beam intensities
- different consumers / experimenters
- requests for intensity / focusing changes (127), 51, 50 Me (1, 700 pnA, 5.5 ms (max.), Y7
- short experiment durations / Ma experiments

51101	re experim					d)	UMAT, Tolm Trautmann/To	ll / olmil e)	UBIO, Vose Alvarez, v	, Au, 4.8 vie Y7.	Ð			
			4.8 + 11.4, X2	deltaE / E klein, X	io '	л	Frautmann , Au, 1	11.4, X0	DeltaE / É l	(leln, XO				
SIS18 o	peration e	xample:												
Au	200	AMeV												
Cr	1	AGeV		S407, Salabura/Pietraszko, Traxier, Stroth,197Au, (PiG/MEVVA ab 26.4.),10e7 pro Spill HAD										
Xe	500	AMeV	SESA, Scholz/S spill, slow	cholz, Cr, 1 GeV/u, 1e8 / (5s) extraction, HTA	S417, Noclforo, Cr/Au, FRS start-up, FRS		S412, Auma MeV/u, s	nn/Boretzky, 3 Slow extractio	(e(MUCIS), { n, FRS/HTC	500	S4 Au 1E	24, Korte 400-800 8-1E7 /sp	en/Gerl,) MeV/u, pill, FRS	g)
Au	400-800	AMev												
more during machine exp.		B, Steck, 19	B, Steck, 197Au, 300 MeV/u, ESR commissioning E039, Beyer, Au79+ , 124,7 MeV/u, 5e8 im ESR, ESR											
J-0 exp	ernnents pa													

GSI IPMs Users

IPM Users:

FAIR

HELMHOLTZ

ASSOCIATION

Operators:

- set up different ion sorts
- check beam width by time
- cooling optimization
- injection optimization

Machine Experimentators / PhD Students:

- accelerator physics
- varying beam intensities
- tune changes
- resonance crossings
- emittance exchanges
- beam excitations
- cooling effects

GSI IPMs User Requests

6

9th Ditanet Workshop - 15-18 April 2013 - CERN - T.Giacomini - IPM - Measurements at GSI

FAIR

HELMHOLTZ

ASSOCIATION

9th Ditanet Workshop - 15-18 April 2013 - CERN - T.Giacomini - IPM - Measurements at GSI

IPM Data of a full cycle in one look

FAIR

HELMHOLTZ

ASSOCIATION

IPM @ SIS18 / Wire Array

10

FAIR

HELMHOLTZ

IPM @ SIS18 / Wire Array

FAIR

HELMHOLTZ

ASSOCIATION

SIS18 Section:

-each IPM in a vacuum tank of 1 m length

- -wire array readout
- -GSI amplifiers beside the IPMs
- -each wire MUX to ADC
- -1 ADC per profile / 100 Hz

FAIR HELMHOLTZ ASSOCIATION

IPM @ SIS18 / Wire Array

-	Flange COF	300	mm
-	e-box opening	200 x 180	mm^2
-	E-field	60 (±5.4 kV)	kV / m
-	cycle time	1-16 s (inject.	-> extract.)

GSI

FAIR **IPM @ SIS18 / Wire Array** HELMHOLTZ GSI ASSOCIATION **SIS18**

rimentierhalle II

SIS18 IPM:

- Profile rate 100
- MCP active len 26
- MCP pore size 12.5
- MCP resistance ~ 100
- Wires / IPM 64
- 2.1 Wire pitch
- Wire diameter 1.5
- 60 1beam width
- poor spatial resolution

- Hz (100hor & 100ver)
- mm
- μm
- MOhms / per plate
- mm
- mm
 - mm within s

IPM @ SIS18 / E-Field

HELMHOLTZ | ASSOCIATION

FAIR

IPM @ SIS18 / E-Field

HELMHOLTZ ASSOCIATION

FAIR

- Corrector electrodes to reduce the longitudinal e-field components Ez.
- Due to vacuum conditions and bakeout each HV electrode individual feedthrough

IPM Types @ GSI

SIS18 IPM: -wire array-64 -beam width: 60 – 1 mm

Wire readout disadvantages: -less spatial resolution -1 dim. readout

-1 dim. readout

FAIR

HELMHOLTZ

ASSOCIATION

-Channel calibration by hand

16

Optical readout by digital Camera

-Measure image 2 dim.
-Spatial resolution < 200 µm
(dep. on MCP width to pixels)

- -image corrections
- -standard software tools

IPM @ GSI / Camera

9th Ditanet Workshop - 15-18 April 2013 - CERN - T.Giacomini - IPM - Measurements at GSI

FAIR

HELMHOLTZ

ASSOCIATION

IPM @ GSI / Camera

MCP – PH – Assembly

- MCP Ph shape ideal rectangular,
- large width ~ 100 mm
- length 40 mm

FAIR

HELMHOLTZ

ASSOCIATION

- P47, 100ns decay time
- MCPs ~ 100 MOhms

GSI

IPM @ COSY FZ-Juelich

GSII

IPM with optical readout installed in COSY@FZ-Juelich

- Protons
- Vacuum tank 0.6 m length
- Main flanges CF250
- Aperture 180 x 180 mm²

Evolution of the horizontal proton beam profile during injection and acceleration to 1.343 GeV/c. About $3 \cdot 10^9$ polarized protons reached flat top. Time span is 2 s.

Evolution of the vertical proton beam profile during injection and acceleration to 1.343 GeV/c. About $3 \cdot 10^9$ polarized protons reached flat top. Time span is 2 s.

Data measured in 2009 in COSY@FZ-Juelich and presented at the DIPAC2009 by V. Kamerdziehv, C. Böhme, J. Dietrich, P. Forck, T. Giacomini.

Horizontal profiles of the polarized proton beam at Vertical proton (polarized) beam profiles at 1.343 GeV/c 1.343 GeV/c. The profile measurement started once the flat top. flat top was reached.

Data measured in 2009 in COSY@FZ-Juelich and presented at the DIPAC2009 by V. Kamerdziehv, C. Böhme, J. Dietrich, P. Forck, T. Giacomini.

ESR IPM – Optical Readout

electron & stochastic cooling

FAIR

HELMHOLTZ ASSOCIATION

ESR IPM:

- Chevron MCP, Phosphorscreen P47, CCD
- beam width 50 - 1 mm
 - beam time s – hours (inject. –> extract.)

FI-FI

(200 hor & 200 ver) beam profiles 200 / s

IPM @ GSI / ESR

IPM with optical readout installed in ESR@GSI

- Vacuum tank 0.6 m length
- Main flanges CF250
- Aperture

FAIR

HELMHOLTZ

ASSOCIATION

180 x 180 mm²

ESR IPM installed with -heat jacket -UV lamp -CCD cameras -HV

GSI

IPM @ GSI / ESR

Beam profiles measured with optical IPM in ESR@GSI.

FAIR

HELMHOLTZ

ASSOCIATION

Current developments

Fast beam changes: -injection mismatches -emittance exchanges due to coupling of tune resonances between hor & ver phase space

Ambition: Bunch by bunch readout. Profile rates of about 5 – 10 MHz

-camera ~ 1000 profiles / s

FAIR

HELMHOLTZ

ASSOCIATION

-via PMT-array or SiPM, prototype avail, not tested yet -detection of ionized residual gas electrons / not ions -additional magnetic field in parallel to electric field

Bunch by Bunch Readout

26

9th Ditanet Workshop - 15-18 April 2013 - CERN - T.Giacomini - IPM - Measurements at GSI

FAIR

HELMHOLTZ

ASSOCIATION

FAR HELMHOLTZ ASSOCIATION

Bunch by Bunch Readout

Digital mock up of the final design. Prototype for FAIR SIS100. Slits in the yokes for CCD.

651

IPMs @ FAIR

FAIR

HELMHOLTZ

ASSOCIATION

FAR HELMHOLTZ ASSOCIATION

- IPM wire array readout
- Data presentation
- IPM optical readout
- Prototypes for FAIR

GSI