

Experiences with Luminescence Monitors at GSI P. Forck, C. Andre, F. Becker, R. Haseitl, B. Walasek-Höhne GSI Helmholtz-Zentrum für Schwerionenforschung, Darmstadt, Germany In collaboration with: T. Dandl, T. Heindl, A. Ulrich, Technical University München CERN DITANET Workshop April 14th, 2013

Outline of the talk:

- Technical realization for single photon detection generated by residual gas
- Energy scaling of signal strength and background, 1.4MeV/u< Ekin< 750MeV/u</p>
- Spectroscopic investigations for rare gases and N₂
- > Profiles & spectroscopy for pressure range 10^{-3} mbar < p < 30 mbar
- Conclusion

Application: Transfer lines and target diagnostics

Beam-based tests at: GSI UNILAC: 1.4 MeV/u < E_{kin} < 11.4 MeV/u

GSI behind SIS: 60 MeV/u < E_{kin} < 750 MeV/u

Tech. University München TANDEM with S: 3 MeV/u

Expected Signal Strength for BIF-Monitor

10⁻² **Physics**: dE/dx [eV/m] Proton energy loss Energy loss of hadrons in gas dE/dxin 10^{-7} mbar N₂ \Rightarrow Profile determination from residual gas 10⁻³ using SRIM \blacktriangleright **lonization:** \approx 100 eV/ionization synchrotron Excitation + optical photon emission: OSS \approx 3 keV/photon 10^{-4} energy ion source Ionization probability proportional to 0.01 10000 0.110 100 1000 dE/dx by Bethe-Bloch formula: energy [MeV] $-\frac{dE}{dx} = \operatorname{const}\left(\frac{Z_t \cdot \rho_t}{A_t}\right)\left(\frac{Z_p^2}{A_t^2}\right)\left|\ln\left(\operatorname{const} \cdot \frac{\gamma^2 \beta^2}{W_{\text{max}}}\right) - \beta^2\right|$ Target electron density: $\propto 1/E_{kin}$ (for E_{kin} > 1GeV nearly constant) Proportional to vacuum pressure \Rightarrow Adaptation of signal strength Strong dependence on projectile charge for ions Z_p^2

P. Forck et al., CERN, April15th, 2013

Beam Induced Fluorescence Monitor: Principle

Detecting *photons* from residual gas molecules, e.g. Nitrogen N_2 + lon $\rightarrow (N_2^+)^*$ + lon $\rightarrow N_2^+$ + γ + lon Vacuum gauge 390 nm< λ< 470 nm emitted into solid angle Ω to camera single photon detection scheme

Features:

- Single pulse observation possible down to $\approx 1 \ \mu s$ time resolution
- High resolution (here 0.2 mm/pixel) can be easily matched to application
- Commercial Image Intensifier
- Less installations inside vacuum as for IPM \Rightarrow compact installation e.g. 20 cm for both panes

BIF-Monitor: Technical Realization at GSI LINAC

BIF stations at GSI-LINAC (4 realized, 2 in preparation):

- 2 x image intensified CCD cameras
- double MCP ('Chevron geometry')
- Optics with reproduction scale 0.2 mm/pixel
- Gas inlet + vacuum gauge
- Pneumatic actuator for calibration
- Insertion length 25 cm for both directions only
- Advantage: single macro-pulse observation

F. Becker (GSI) et al., Proc. DIPAC'07, C. Andre (GSI) et al., Proc. DIPAC'11

P. Forck et al., CERN, April15th, 2013

BIF-Monitor: Technical Realization

BIF station for single photon detection at GSI-LINAC:

 \rightarrow Comparison taper coupling versus relay lens coupling

Advantage of taper coupling:

- higher light transmission
- ➢ no vignetting

Advantage of relay coupling:

- CCD camera is changeable
- Iower light transmission acceptable due to high MCP gain
- \Rightarrow final choice !

P. Forck et al., CERN, April15th, 2013

C. Andre (GSI) et al., Proc. DIPAC'11

Examples from Ion LINAC at GSI

-19

Single pulse observation

4.7 MeV/u Ar¹⁰⁺ beam I=2.5 mA equals to 10^{11} particles **One single** macro pulse of 200 µs Vacuum pressure: p= 10^{-5} mbar (N₂)

Operating software at UNILAC

Partly used by operators

P. Forck et al., CERN, April15th, 2013

Examples from Ion LINAC at GSI

Single pulse observation

4.7 MeV/u Ar¹⁰⁺ beam I=2.5 mA equals to 10^{11} particles **One single** macro pulse of 200 µs Vacuum pressure: p= 10^{-5} mbar (N₂)

Time resolved observation

Variation *during* the macro pulse detectable: Switching of image intensifier (within 100 ns) \rightarrow 20 µs exposure window during macro-pulse

by matching the exposure to beam delivery

Energy Scaling behind SIS18 at GSI

- Signal proportional to energy loss
- > Suited for FAIR-HEBT with $\geq 10^{10}$ ions/pulse
- > Background prop. $E_{kin}^2 \Rightarrow$ shielding required
- Background suppression by 1 m fiber bundle

Shielding Concept for Background Reduction

FLUKA simulation: Shielding of 1x1x1 m³ concrete block: 900 MeV/u BIF monitor 2m to beam dump $\Rightarrow \gamma \& n$ reduction 95 %

Fiber-optic bundle with ≈1 million fibers:

- Commercial device for reduction of background and CCD destruction
- Image Intensifier and CCD in shielded area
- Iarger distance but same solid angl Experimental results:
- ➢No significant image distortion
- Low scintillation by n & γ inside bundle <u>un</u>-shielded: ≈30 % increase of background

Effective neutron shielding: moderation and absorption

\cdot e.g. 0.5 m concrete ightarrow

CCD

Investigations of light yield and wavelength spectrum for N_2 and rare gases.

Imaging Spectrograph installed behind UNILAC: Wavelength selective beam profile

Beam parameter for detailed exp. at GSI (different gases, constant pressure): S^{6+} at 5.16 MeV/u with $3 \cdot 10^{11}$ pps, 2000 macro-pulses, $p_{N2}=10^{-3}$ mbar

P. Forck et al., CERN, April15th, 2013

BIF-Monitor: Spectroscopy – Fluorescence Yield

BIF-Monitor: Spectroscopy – Profile Reading

Spectroscopy – Excitation by different Ions

For N_2 working gas the spectra for different ion impact is measured:

Results:

- Comparable spectra for all ions
- > Small modification due to N_2^+
- esults: Comparable spectra for all ions Small modification due to N_2^+ dissociation by heavy ion impact Results fits to measurements for proton up to 100 GeV at CERN Results fits to measurements
- \Rightarrow Stable operation possible for N_2

Care: Different physics for $E_{kin} < 100 \text{ keV/u} \Leftrightarrow v_{coll} < v_{Bohr}$

Different spectra measured \rightarrow

M. Plum et al., NIM A (2002), A. Variola, R. Jung, G. Ferioli, Phys. Rev. Acc. Beams (2007),

P. Forck et al., CERN, April15th, 2013

Variation of N₂ Pressure over 6 Orders of Magnitude

P. Forck et al., CERN, April15th, 2013

Spectroscopy – Variation of Gas Pressure

10+1 mbar

<u>r_{mfp}~ 30</u> μm

Beam: S at 3 MeV/u at TU-München TANDEM

P. Forck et al., CERN, April15th, 2013

30mm

Ø100mm

Image Spectroscopy – Different Gas Pressures and Profile Width

Detailed investigations of BIF for various gases from 10⁻³ mbar to 100 mbar

Imaging spectrometer \Rightarrow wavelength and profile information: status *preliminary* data analysis

P. Forck et al., CERN, April15th, 2013

Image Spectroscopy – Different Gas Pressures and Profile Width

Observation: Trans. of ionic states e.g. $N_2^+ \rightarrow$ profile width independent on pressure Trans. of neutral states e.g. $N_2 \rightarrow$ width strongly dependent on pressure!

P. Forck et al., CERN, April15th, 2013

Image Spectroscopy – Different Gas Pressures and total Profile Width

1,0 Xe

0,5

0.0 1,0

0,5

Entire spectral range \rightarrow effect is smaller but significant disturbance for He and Ne Task: To which pressure the methods delivers

a correct profile reproduction?

Results:

- ▶ avoid 10^{-2} mbar \Leftrightarrow

Beam: S at 3 MeV/u at TU-München TANDEM

E-3 mbar E-2 mbar

E-1 mbar

E+0 mbar 3E+1 mbar

all transitions

Alternative Single Photon Camera: emCCD

Figure 3

P. Forck et al., CERN, April15th, 2013

Comparison BIF ↔ IPM at GSI LINAC with 4.7 MeV/u Xe²¹⁺

Test with LIPAc design and various beams
Comparison IPM without MCP and BIF
⇒ Advantage IPM: 10 x lower threshold as BIF
⇒ Disadvantage IPM: Complex vacuum installation, image broadening by beam's space charge

Collaboration with J. Egberts, J. Marroncle, T. Papaevangelou CEA/Saclay J. Egberts (CEA) et al., DIPAC'11, F. Becker (GSI) et al , DIPAC'11

P. Forck et al., CERN, April15th, 2013

Comparison of BIF and IPM Profiles in Different Gases

Comparison BIF ↔ IPM for He Gas

Variation of Helium gas pressure:

- Profile broadening for both detectors
- Large effect for BIF (emission of photons)
- Comparison to SEM-Grid and BIF
- \Rightarrow Helium is not suited as working gas

P. Forck et al., CERN, April15th, 2013

Summary Beam Induced Fluorescence Monitor

- Non-destructive profile method demonstrated (single photon detection possible)
- > Operational usage at UNILAC started, pressure typ. $p < 10^{-5}$ mbar
- Considered for higher beam energies E > 100 MeV/u
- Shielding concept partly demonstrated
- > Independence of profile reading for pressures up to 10^{-2} mbar for N_2 , Xe, Kr, Ar
- Different pressure dependence for several optical transition (preliminary result)
- $> N_2$ is well suited: blue wavelength, high light yield, good vacuum properties
- > Xe is an alternative due to 10-fold shorter lifetime: less influence in beam's E-field
- > He is excluded as working gas due to wrong profile reproduction
- Modern emCCD might be an alternative
- Future: Investigation of shielding and radiation hardness of components
- Future: Transfer of spectral investigations from 3 MeV/u to E > 100 MeV/u
- Future: Investigation as target diagnostics for RIB, neutrons or antiprotons Thank you for your attention!

Spare transparencies

Spectroscopic Investigations for BIF of N2: Wavelength

Spectroscopic Investigations for BIF of N2: Profile Reading

P. Forck et al., CERN, April15th, 2013

Spectroscopic Investigations for BIF of N2: Light Yield

Spectroscopic Investigations for BIF of N2 and He

Usage as a Diagnostics of a Gas Target

The properties of a gas target including beam overlap can be monitored: The light yield is proportional to beam current x gas density Example: UNILAC Gas stripper at 1.4 MeV/u

P. Forck et al., CERN, April15th, 2013

Pressure-Variation by 6 OM

Spectroscopy – Color and Fluorescence Yield

P. Forck et al., CERN, April15th, 2013

Spectroscopy – Profile Reading

BIF-Monitor Developments

P. Forck et al., CERN, April15th, 2013

BIF-Monitor: Technical Realization

Example BIF station at GSI-LINAC:

- 2 x image intensified CCD cameras with reproduction scale 0.2 mm/pixel
- Gas inlet + gauge

P. Forck et al., CERN, April15th, 2013