

Summary of experience with Tevatron synchrotron light diagnostics

9th DITANET Topical Workshop on Non-Invasive Beam Size Measurement for High Brightness Proton and Heavy Ion Accelerators 15-18 April 2013

> Randy Thurman-Keup Fermilab

Tevatron 1985(?)-2011

- Collided 980 GeV protons and antiprotons in the same beampipe
- Proton intensity was ~1 x 10¹³ (300 x 10⁹/bunch)
- Antiproton intensity was typically ~2 x 10¹² (50-100 x 10⁹ / bunch at start of store)
- Beams were arranged in 3 sections of 12 bunches
- Bunch longitudinal sigma was 2-3 ns

Synchrotron Radiation Monitors

- Original creation by Alan Hahn and Pat Hurh early 1990's
- 2 profile monitors: one for protons, one for antiprotons
- 2 abort gap beam intensity monitors

Synchrotron Radiation Devices

Fermilab

Synchrotron Radiation Devices

Antiproton Light

Synchrotron Radiation Workshop (SRW) used extensively to understand various effects

These images are SRW simulations of illumination at the antiproton pickoff mirror

Antiproton source is two edges, hence the interference structure at 200 nm

Profile Measurement, aka Synclite

After object	Object Efficiency		# of photons / bunch / 25 nm			
			Protons	Antiprotons		
Magnet Edge	l	_	750,000	750,000		
Pickoff Mirror	90)%	675,000	675,000		
Vacuum Window	90)%	608,000	608,000		
Lens	93	3%	565,000	565,000		
x-y Mirror	90)%	509,000	509,000		
Beam Splitter	44	1%	224,000	224,000		
x-y Mirror (proton	90%		202,000	—		
only)						
Wavelength Filter	10 nm	40 nm	81,000	358,000		
	40%	160%				
Photocathode	14%		11,000 p.e.	50,000 p.e.		

Proton Object Distance = 769 cm Proton Image Distance = 187 cm Proton Optical Magnification = 0.24

Antiproton ½ Dipole Object Distance = 503 cm Antiproton Full Dipole Object Distance = 544 cm Antiproton Image Distance = 85 cm Antiproton Optical Magnification = 0.17

Acquisition

- Camera image acquired through LabVIEW program
 - Image consisted of a variable number of turns to optimize image intensity bunch-by-bunch
- Dark current image subtracted
- Line-by-line linear background subtracted from image
- Horizontal and Vertical Profiles fit with gaussian plus linear background
- Emittance evaluated from beam size plus lattice parameters plus dp/p

9

Intensity Effects on Measured Size

4 sources of intensity variation in the system

Intensifier gain Intensifier gating duty cycle Intensifier gating voltage Synchrotron radiation intensity

7 Fermilab

All intensity effects can be parameterized with image intensity

16 April 2013

Intensity Effects on Measured Size

Diffraction

Classical diffraction

$$r_{airy} = 0.61 \frac{\lambda}{NA}$$

- Plot is measured sigma vs. wavelength
 - Data points are taken with 10 nm bandwidth filters
 - Red points are SRW simulation

7 Fermilab

Diffraction

SRW simulation of diffraction as a function of sigma

Proton simulations agree with classical but antiproton does not

- Diffraction varies across image
- Presumably due to multiple source points and/or body light

Camera Focus

Because synchrotron radiation is not a point source, focusing is a more complicated issue Particularly in the antiproton case with 2 magnet edges

16 April 2013

Impact of Extended Source

Proton Mirror Study

Moved the pickoff mirror which selected differing contributions of light

16 April 2013

Antiproton Mirror Study

Resolution vs. Position on Intensifier

Variation of measured sigma as a function of position on the intensified camera

RMS is < 10 μm

Saw signal degradation towards end of Tevatron

Synclite vs. Flying Wire

Overall resolution term obtained by flattening the comparison within store (red lines)

Pre 2006 shutdown

Synclite vs. Flying Wires

Post 2006 shutdown

16 April 2013

Synclite vs. Flying Wire

Variation from store to store

Synclite Use

- With the advent of electron cooling
 - Antiproton beam too bright
 - Proton beam emittance growth
 - Poor luminosity lifetime
 - So... uncool the antiprotons a bit
 - Noise source kicker
 - Synclite antiproton signal as feadback

Abort Gap Monitor

- PMT is a Hamamatsu 3-stage MCP type
- PMT charge signal is integrated for a specified duration and digitized
- Critical time was during the early part of the gap in which the abort kicker would fire
- The table below lists the number of photons or or photoelectrons after a particular optic element

	Protons				Antiprotons				
Wavelength (nm)	450	550	650	750	450	550	650	750	
# of photons	15,000	24,000	30,000	37,000	39,000	58,000	80,000	106,000	
/100 nm/10^9 particles									
Optical Efficiency –	30.0%				30.0%				
Mirrors, etc									
Quantum Efficiency	13.0%	8.5%	5.5%	2.0%	13.0%	8.5%	5.5%	2.0%	
Duty Cycle (1 abort gap)	0.1				0.1				
# photoelectrons	191				496				

Abort Gap Monitor Calibration

Calibration of the abort gap monitor via

- Baseline-subtracted DCCT signal
- Tevatron Electron Lens (abort gap cleaner)

16 April 2013

Pedestal Algorithm

Pedestals have two components

A beam-off pedestal

16 April 2013

- A beam-on non-gated pedestal
 - Tracks changes over time

9th D

Beam Growth Between Bunches

Bunched Beam From Main Injector

Measurements in photon counting mode

Conclusions

- Synclite
 - Worked well
 - Should have had a uniform illumination calibration source (actually did, but not very uniform)
 - Should have measured the optical resolution
 - Planned to but didn't finish it