Review of the New CERN Fast Wirescanner Mechanical aspects important for determining the final wire position accuracy

Juan Herranz

- Wire Scanner general considerations
- Sources of uncertainty
- Strategy to minimize uncertainties
- Summary
- Conclusions

General considerations

Juan Herranz

General considerations

Sources of uncertainty

Sources of uncertainty

$$\alpha_e = \alpha_1 + \alpha_2 + \alpha_3 - \alpha_d$$
$$\delta_e = \delta_1 + \delta_2 + \delta_3 - \delta_d$$

"Deterministic" displacement due to the peak acceleration and the inertia of the system

> Pick accel. 6700 rad/s² Optical disk, 3 mm thickness Wire, 12 strands of 7um

> > FEA estimation FEA estimation Analytical estimation FEA estimation

Review of the New CERN Fast Wirescanner

 (μm)

7.8

40

20

17.5

85.3

3

d

е

Wire deflection

Twist of the shaft (disk)

Total deformation

3

d

е

128

112.0

547

Juan Herranz

Sources of uncertainty

Beam-wire relative position uncertainty +/- 10 mm

For a wire deflection (δ_{wire}) of 20 μm and a beam-wire relative position of +/-10 mm

Total

 (μrad)

± 160

+ 547

+ 32

± 739

 (μm)

± 25

± 85.3

± 115.3

+ 5

$$\delta_{w-b} = 5 \; (\mu m)$$

	Review of the New CERN Fast Wirescanner
Juan Herranz	9th DITANET Topical Workshop on Non-Invasive Beam Size Measurements for High Brightness Proton and Heavy Ion Accelerators

CERN

Juan Herranz

Minimization strategies - Design

See Sebastian's presentation

Digital mock-up N. Chritin

Review of the New CERN Fast Wirescanner

Minimization strategies – Motion pattern

Pattern optimization can provide large improvements in the residual vibrations minimization

Minimization strategies – Vibration measurements

Review of the New CERN Fast Wirescanner

Juan Herranz

Carlos Daniel Morais Pereira

Minimization strategies - Wire dynamic model

Dynamic model intended to provide quantitative experimental information about Residual vibration of the scanner

Review of the New CERN Fast Wirescanner

Juan Herranz

Summary

Uncertainty	Minimization strategy			
	Design	Calibration	Motion pattern	
Misalignment	No play in the system	Correction by calibration		
		tables		
Pure deformations	Optimization stiffness and	Correction by calibration	Smother profiles have	
	inertia	tables	more deterministic	
			behaviour	
Residual Vibrations	Optimization stiffness and		Minimizing residual	
	inertia		vibrations	
Rel. Beam-Wire pos.			Smother -> deterministic	
			behaviour	

Expected **approximate** values after uncertainties minimization: (the expectation is to attend values of the **same order of magnitude**)

	(µrad)	(µ <i>m</i>)
Misalignment	± 32	± 5
Pure deformations	± 32	± 5
Vibrations	± 12	± 2
Rel. Beam-Wire pos.	± 32	± 5
Total	± 109	± 17

Review of the New CERN Fast Wirescanner

Juan Herranz

Conclusions

- The main sources of uncertainty for determining the wire position has been identified
- Actions to minimize this uncertainties has been take and integrated in the design
- Studies to minimize the influence of the motion pattern are ongoing
- Vibration measurement and quantification system are in phase of test and development using the exiting calibration test bench for PS and PSB scanners and this systems are going to be integrated in the first prototype

Many thanks !

Juan Herranz

Uncertainty	Minimization strategy		
	Design	Calibration	Motion pattern
Misalignment	No play in the system	Correction by calibration	
		tables	
Pure deformations	Optimization stiffness and	Correction by calibration	Smother profiles have
	inertia	tables	more deterministic
			behaviour
Residual Vibrations	Optimization stiffness and		Minimizing residual
	inertia		vibrations
Rel. Beam-Wire pos.	= minimize deformations		

	Total	
	(µrad)	(µ <i>m</i>)
Misalignment	± 32	± 5
Pure deformations	± 32	± 5
Vibrations	± 12	± 2
Rel. Beam-Wire pos.	± 32	± 5
Total	± 109	± 17

$$\frac{P_{error}}{P} = \left| \frac{E\theta_w}{\theta_w} \right| + |\tan(\theta)E\theta|$$
$$\tan(30^\circ) 17x 10^{-6} = 9.8x 10^{-6}$$
$$\frac{E\theta_w}{\theta_w} = 6.28 x 10^{-4}$$
$$P_{error} = 300x 6.38x 10^{-4} = 0.2$$

15 m/sec check

Typical results after calibration for PS scanner

Jonathan Emery

Juan Herranz

9th DITANET Topical Workshop on Non-Invasive Beam Size Measurements for High Brightness Proton and Heavy Ion Accelerators

Jonathan Emery

Juan Herranz

9th DITANET Topical Workshop on Non-Invasive Beam Size Measurements for High Brightness Proton and Heavy Ion Accelerators

Review of the New CERN Fast Wirescanner 9th DITANET Topical Workshop on Non-Invasive Beam Size Measurements for High Brightness Proton and Heavy Ion Accelerators