

## Outline

- Introduction
- Status of LHC Central Timing
  - Hardware
  - Software
- Status of Beam Synchronous Timing (BST)
  - Hardware
  - Software
- Testing
- Conclusions

## **Central Timing**

LHC timing is different compared to its injector chain

- Almost completely decoupled from injectors (like LEP)
- No cycles / supercycles, slow cycling machine, BUT
- Synchronisation of loosely coupled systems very important
- Events are linked to machine processes injection, ramp, squeeze, physics,... which are modelled as event tables
- Event tables:
  - list of events with name, delay, payload
  - loaded, unloaded, started, stopped, aborted under LSA control
  - played independently and concurrently (up to 16)
  - Run or loop n-times or forever on request (timing event)

like collection of CTG cards all driving the same GMT cable

## **Central Timing**

- Asynchronous events (beam energy, intensity, SBF)
- Externally triggered events (injection warning, PM events)
- Telegram
  - Real time channel to broadcast machine information at 1Hz: modes, beam type, Energy, Intensity per ring, flags, ...
  - All information in the telegram is also sent out by events
- Distribution of safe beam parameters and flags
  - Safe beam flag (SBF)
  - Beam permit flag (BPF)
- UTC time reference for accurate timestamps
  - Provided by GPS
  - 25ns resolution
  - Jitter <= 1ns



#### **BST**

- Means of supplying LHC-BI with two basic clocks :
  - 40Mhz bunch synchronous triggers
  - 11kHz LHC revolution frequency

#### Components

- BST master: broadcast of synchronisation signals & BST message
- TTC system: signal encoding & transmission over optical fibre
- Receiver (BOBR): recovers BST message and provides timing signals required to synchronize instrumentation

#### BST message

- mainly for beam instrumentation to trigger and correlate acquisitions (BPM 1000 turn, Q, etc.)
- UTC time, turn count and BST status byte update each turn
- contains current machine status and various LHC beam parameters (mode, E, I,...) → of interest to LHC experiments

### **BST**

#### **Basic Architecture**



BST message assembler collects all data and commands to be transmitted via the TTC system on a given turn which is then transmitted by the BST master.

3 operational BST systems: B1, B2 and SPS with transfer lines

## Central Timing – HW Status

- Timing Generators
  - 3 VME crates installed and working in CCR
  - 2 MTGS: CS-CCR-CTMLHCA, CS-CCR-CTMLHCB one acts as a hot-standby, manual switch for permutation
  - Gateway (FESA API): CS-CCR-CTMLHCGW
  - No connection to CBCM yet (external conditions)
- Timing Receiver cards (CTRI, CTRP, CTRV)
  - CTRI cards deployed to all WorldFIP gateways
  - For other equipment, deployment follows installation schedule
  - First functional tests are performed after installation
- Cables & Fibre optics, optical transmitters/receivers
  - All installed, except for experiments and collimators

## Safe Machine Parameter Verification



SMPV module will be provided by AB/CO/MI, in the meantime it's simulated by software.

## Central Timing – SW Status

- Server Software:
  - CFV-CCR-CTMLHCGW runs 3 FESA classes
    - LHCTM: LHC Table Manager
      - event table manipulations
    - LHCMTG: Telegram
      - telegram manipulations
    - LHCCTMON: Diagnostics
      - Allows check of what timing table sends out
      - Still under development

Beware: All classes are still subject to modifications!

## Central Timing – SW Status

#### Timing Editor application (by Delphine)

- Event table manipulations (load, unload, start, stop, abort)
- Issuing single events (already tested for PC ramps)
- Event tables have already been loaded/unloaded



## Central Timing – SW Status

#### LHC Sequencer

- Communicates with CFV-CCR-CTMLHCGW to:
  - Take control over filling process (CBCM master)
  - Manage event tables (load, unload, start, stop, abort)
  - Issue events
- Tested so far:
  - Sending single events (power converter ramping)

#### **CBCM Sequence Manager**

- Integration of LHC logic into existing application
- Still under development
- No tests performed yet
- To be delivered in January 2008

## BST – HW Status

- 3 BST master crate VME modules installed in CCR (B1, B2, SPS)
- BST receivers (BOBR) available, but not yet all (130 in total) installed

| Beam Instr | umen | tation |   |   |   |   |   |   |
|------------|------|--------|---|---|---|---|---|---|
| System     | 1    | 2      | 3 | 4 | 5 | 6 | 7 | 8 |
| BPM        | V    | ×      | × | V | V | × | × | V |
| BLM        | V    | ×      | × | V | × | × | × | V |
| BCTFR      |      |        |   | V |   |   |   |   |
| BCTFD      |      |        |   |   |   | × |   |   |
| BWS        |      |        |   | × |   |   |   |   |
| BSRL       |      |        |   | × |   |   |   |   |
| BSRA       |      |        |   | × |   |   |   |   |
| BRA        | ×    | ×      |   |   | × |   |   | × |
| BQ         |      |        |   | × |   |   |   |   |

#### **BST-SW Status**

- Master FESA class still under development
- Receiver FESA class well advanced
  - FESA server with basic functionality ready to start diagnostics.
  - Comparison tests between different locations
- Details will be published on LIDS (BDI sw website)
- Beam Synchronous Timing Expert Application allows monitoring & diagnostic of BOBR cards still under development...

first version to be delivered for Dec '07

## Timing - checks

| System           | GMT | BST | Check                       |
|------------------|-----|-----|-----------------------------|
| Injection Kicker | yes | no  | send event/verify reception |
| Dump Kicker      | yes | no  | send event/verify reception |
| PC               | yes | no  | send event/verify reception |
| RF               | yes | no  | send event/verify reception |
| BIS              | yes | no  | send event/verify reception |
| Collimators      | yes | no  | send event/verify reception |
| Vacuum           | yes | no  | send event/verify reception |
| Cryogenics       | yes | no  | send event/verify reception |
| BI               | yes | yes | send event/verify reception |
| MPS              | yes | no  | send event/verify reception |
| Experiments      | no  | yes | verify reception            |

Timing checks per system could be prepared as subsequence for the LHC Sequencer and executed before each fill.

## **GMT** tests

- Issuing events individually and check correct system response
- Generation of externally triggered events
  - Injection forewarning
  - Beam dump and PM events
- Execution of event tables
- All possible event table manipulations
- Concurrent execution of event tables (maximum)
- Dry run "Fill the LHC" to verify synchronisation with injectors

This may perhaps require some MD time after the startup of the injector chain.

### **BST** tests

- Check BST masters
- Check BOBR issuing test byte from master and verifying correct reception
- BST Message checks
- AB-BDI-SW will provide a check routine to be launched from the LHC Sequencer

### References

- Telegram: <a href="http://ab-dep-co-ht.web.cern.ch/ab-dep-co-ht/timing/Seg/tgm.htm">http://ab-dep-co-ht.web.cern.ch/ab-dep-co-ht/timing/Seg/tgm.htm</a>
- Events: http://ab-dep-co-ht.web.cern.ch/ab-dep-co-ht/timing/Seq/mtgConfig.htm
- Documents:
  - The CERN LHC Central Timing, A Vertical Slice <a href="http://ics-web4.sns.ornl.gov/icalepcs07/FOAA03/FOAA03.PDF">http://ics-web4.sns.ornl.gov/icalepcs07/FOAA03/FOAA03.PDF</a>
  - "FILL THE LHC" A Use Case For The LHC Injector Chain <a href="https://edms.cern.ch/document/839438/1">https://edms.cern.ch/document/839438/1</a>
  - BOBR
    AB-BDI Software section web page LIDS

### Conclusions

- Timing infrastructure is not yet fully available
- First BST tests could be performed end of this year
- First injector chain timing tests under sequencer control early next year
- Timing check procedures for fast and slow timing probably need to be executed regularly by the sequencer (before each fill?).

# Acknowledgements

- J.Lewis, I.Kozsar, J.C.Bau
- R.Jones, J.J.Gras, L.Jensen
- M.Lamont