Higgs lineshapes in BSM models

Qiang Li (PKU) <u>Nhan Tran</u> (FNAL)

LHC XS WG, BSM and Heavy Higgs January 23, 2013

courtesy S. Bolognesi and others

Define couplings for h_1 (m = 126 GeV) as C_V and C_f Define heavy higgs couplings, h_2 , as C'_V and C'_f Unitarization of VV \rightarrow VV scattering and VV \rightarrow ff require:

Benchmark model #1:

 $C'^2 = (1-C^2)$, but also must consider decays to new states, BR_{new} (i.e. $h2 \rightarrow h1 h1$) Thus we consider the cross-section and width to scale accordingly:

 μ' = C'² x (1 - BR_{new}) and Γ' = (C'²/(1-BR_{new})) x Γ_{SM}

CurrentCMS: $\mu = 0.88 \pm 0.21$ boundsATLAS: $\mu = 1.35 \pm 0.24$

CMS: μ ' (CL95) > 0.46 \rightarrow C'² < 0.46 ATLAS: μ ' (CL95) > 0.13 \rightarrow C'² < 0.13

- BSM interpretations require scaling width and cross-section simultaneously
- Current re-weighting scheme
 - Re-weight POWHEG MC from relativistic running width BW_{run}(Γ_{SM}) to complex pole scheme BW_{CPS}(Γ_{SM})
 - Re-weight for ggWW interference effects
- Modifications
 - Additional re-weighting to go from $BW_{CPS}(\Gamma_{SM})$ to $BW_{CPS}(\Gamma')$
 - Propose to do an reweighting using analytic $\mathsf{BW}_{\mathsf{CPS}}$
 - Can we also use POWHEG CPS implementation altering the width?
 - Scale interference effects by C' accordingly, "S" and "Intf"
 - Computations performed in MCFM altering the width
- Tests in context of HWW

Fitting of the GEN level signal distributions

Idea: re-weight from Γ_{SM} to Γ ', but need to find a reasonable analytic shape to do it

<u>Points</u>: Powheg lineshape, Powheg lineshape including CPS reweighting, Powheg lineshape including CPS reweighting + interference reweighting <u>Lines</u>: BW running width, BW running width (width x 0.5)

Running width BW does a reasonable job if fitting the lineshape, albeit with wrong Γ_{fit}

Fitting of several mass points and also adding the line BW(C² x Γ_{fit}) where C² = 0.2, 0.5

Unfortunately there is not a simple linear correlation with the SM width

mass:	500 , gammaSM:	68.0 , gammaFit:	57.66
mass:	550 , gammaSM:	93.0 , gammaFit:	79.73
mass:	600 , gammaSM:	123.0 , gammaFit:	110.03
mass:	700 , gammaSM:	199.0 , gammaFit:	178.46
mass:	800 , gammaSM:	304.0 , gammaFit:	242.51
<pre>mass:</pre>	900 , gammaSM:	449.0 , gammaFit:	232.85
mass:	1000 , gammaSM:	64/.0 , gammaFit:	551.35

Interference contribution (I) can be separated from LO contribution (S), parameterized as:

 $1 + R_2$ where $R_2 = I/S$

• Systematic uncertainties comparing against K factors

• R2 = 1, sqrt(K_{gg})/K_{NNLO}, 1/K_{NNLO}

• Can we scale the SM interference contribution to BSM benchmarks?

Interference effects computed in MCFM Modification of Higgs width and couplings

Scaling SM interference contribution shows similar trend but not perfect agreement

backup

10