Phenomenology of Fermionic Asymmetric Dark Matter

Shigeki Matsumoto (Kavli IPMU)

In collaboration with
Biplob Bhattacherjee
Satyanarayan Mukhopadhyay
Mihoko M. Nojiri

Why is a fermionic ADM attractive?

Evidences of BSM

Structure formation (Inflation)
 Existence of Dark Energy
 Neutrino masses and mixings
 Baryon asymmetry of Universe
 Existence of Dark Matter

Heavy right-handed neutrinos

 U(1)_{B-L} gauge symmetry
 Residual discrete symmetry

Why $U(1)_{B-L}$ works?

- $U(1)_{B-L}$ can be spontaneously broken by VEV having a B-L charge 2.
- The SM involves only B-L odd fermions and B-L even (zero) bosons,

A New fermion(boson) with a even(odd) B-L charge becomes stable! Particle (either fermion or boson) with a fractional B-L charge is OK.

Possible DM candidates

- 1. A fermion which is singlet under $U(1)_{B-L} \rightarrow e.g.$ Neutralino in MSSM.
- 2. A boson charged under $U(1)_{B-L} \rightarrow$ Severe limit from neutron stars.
- 3. A fermion which is charged under $U(1)_{B-L} \leftarrow Today's$ topic.

Properties of a fermionic ADM

1 From detailed balance among chemical potentials of SM particles and ADM,

$$\frac{({\rm B-L})_{\rm SM}}{({\rm B-L})_{\rm DM}} = \frac{79}{22\,Q_{\rm DM}^2} \longrightarrow m_{\rm DM} = \frac{30\,79\,\Omega_{\rm DM}}{97\,22}\frac{m_N}{\Omega_b} \simeq \frac{5.7\,{\rm GeV}}{Q_{\rm DM}}$$

without depending on details of ADM interactions! [lbe, S.M., Yanagida, 2012]

- 2 When $Q_{DM} = O(1)$, $m_{DM} << m_Z$, ADM must be singlet under SM gauge groups.
- 3 Singlet fermion ADM does not have any renormalizable interactions, so that additional light particles (mediator) must be introduced to have a large annihilation X-section between dark and anti-dark matter particles.

Minimal setup

Singlet scalar mediator!

$$\mathcal{L} = i\overline{\chi} (\partial \!\!\!/ - m_{\chi}) \chi + \frac{1}{2} \left[(\partial \phi')^2 - m_{\phi'}^2 \phi'^2 \right] - \kappa \overline{\chi} \chi \phi' - V(H', \phi')$$

$$h = (\cos \alpha) h' - (\sin \alpha) \phi' \quad \& \quad \phi = (\sin \alpha) h' + (\cos \alpha) \phi'$$

- 1 $m_{\gamma} = 17 \text{ GeV} (Q_{DM} = 1/3) \& \kappa = 1 \text{ as a sample point.}$
- **2** Focusing on the region $\mathbf{m}_{\phi} < \mathbf{m}_{\chi}$ (Annihilation process $\chi \chi \rightarrow \phi \phi$)
- 3 sin α : = free parameter (It has typically a value of $10^{-2} 10^{-4}$)

Summary (constraints & prospects)

- 1. DM & Anti-DM annihilation.
- 2. Direct detection of DM.
- 3. DM self-scatterings.
- Cosmology of the mediator φ.
- 5. Z oproduction @ LEP
- 6. Electroweak precision @ LEP.
- 7. Higgs measurement @ LHC.
- 8. Direct ϕ production @ LHC.
- 9. production from H @ LHC.
- 10. Upsilon decay to $\phi & \gamma$.
- 11. Beam dumping experiments.
- 12. Supernova cooling, etc.

Summary (constraints & prospects)

- 1. DM & Anti-DM annihilation.
- 2. Direct detection of DM.
- 3. DM self-scatterings.
- 4. Cosmology of the mediator φ.
- 5. Z oproduction @ LEP
- 6. Electroweak precision @ LEP.
- 7. Higgs measurement @ LHC.
- 8. Direct oproduction @ LHC.
- 9. production from H@ LHC.
- 10. Upsilon decay to $\phi & \gamma$.
- 11. Beam dumping experiments.
- 12. Supernova cooling, etc.
- Fermionic ADM is interesting from the viewpoint of gauged $U(1)_{B-L}$.
- Fermionic ADM requires an additional light mediator (a real scalar in the minimal case), which makes low energy phenomenology being rich,
- Among experiments, DM direct detections will be the most important.

Backup (Thermal history of the ADM)

- B-L asymmetry is produced. ADM (DM and Anti-DM) is expected to be chemical & thermal equilibrium. After that, (B-L)_{tot} is preserved.
- Interactions maintaining equilibrium between ADM & SM sectors are decoupled. After that, (B-L)_{DM} & (B-L)_{SM} are individually preserved.
- Sphaleron process is decoupled. After that, all of B_{SM}, L_{SM} and (B-L)_{DM} are individually preserved. B_{SM} gives BAU observed today.
- Annihilation between DM & Anti-DM occurs, Symmetric component is eliminated and either DM or Anti-DM survived, which gives the DM density observed today, Annihilation must be efficient enough.